Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1889–1898. doi: 10.1016/S0006-3495(98)77898-1

Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes.

J Teissié 1, C Ramos 1
PMCID: PMC1299532  PMID: 9545050

Abstract

Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.

Full Text

The Full Text of this article is available as a PDF (210.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abidor I. G., Sowers A. E. Kinetics and mechanism of cell membrane electrofusion. Biophys J. 1992 Jun;61(6):1557–1569. doi: 10.1016/S0006-3495(92)81960-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blangero C., Rols M. P., Teissié J. Cytoskeletal reorganization during electric-field-induced fusion of Chinese hamster ovary cells grown in monolayers. Biochim Biophys Acta. 1989 Jun 6;981(2):295–302. doi: 10.1016/0005-2736(89)90040-0. [DOI] [PubMed] [Google Scholar]
  3. Chang D. C., Reese T. S. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J. 1990 Jul;58(1):1–12. doi: 10.1016/S0006-3495(90)82348-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cruzeiro-Hansson L., Mouritsen O. G. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta. 1988 Sep 15;944(1):63–72. doi: 10.1016/0005-2736(88)90316-1. [DOI] [PubMed] [Google Scholar]
  5. Dimitrov D. S., Sowers A. E. A delay in membrane fusion: lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse. Biochemistry. 1990 Sep 11;29(36):8337–8344. doi: 10.1021/bi00488a020. [DOI] [PubMed] [Google Scholar]
  6. Dimitrov D. S., Sowers A. E. Membrane electroporation--fast molecular exchange by electroosmosis. Biochim Biophys Acta. 1990 Mar;1022(3):381–392. doi: 10.1016/0005-2736(90)90289-z. [DOI] [PubMed] [Google Scholar]
  7. Ehrenberg B., Farkas D. L., Fluhler E. N., Lojewska Z., Loew L. M. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys J. 1987 May;51(5):833–837. doi: 10.1016/S0006-3495(87)83410-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Escande-Géraud M. L., Rols M. P., Dupont M. A., Gas N., Teissié J. Reversible plasma membrane ultrastructural changes correlated with electropermeabilization in Chinese hamster ovary cells. Biochim Biophys Acta. 1988 Apr 7;939(2):247–259. doi: 10.1016/0005-2736(88)90068-5. [DOI] [PubMed] [Google Scholar]
  9. Gabriel B., Teissié J. Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim Biophys Acta. 1995 Apr 28;1266(2):171–178. doi: 10.1016/0167-4889(95)00021-j. [DOI] [PubMed] [Google Scholar]
  10. Gass G. V., Chernomordik L. V. Reversible large-scale deformations in the membranes of electrically-treated cells: electroinduced bleb formation. Biochim Biophys Acta. 1990 Mar 30;1023(1):1–11. doi: 10.1016/0005-2736(90)90002-6. [DOI] [PubMed] [Google Scholar]
  11. Gross D., Loew L. M., Webb W. W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986 Aug;50(2):339–348. doi: 10.1016/S0006-3495(86)83467-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hibino M., Itoh H., Kinosita K., Jr Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J. 1993 Jun;64(6):1789–1800. doi: 10.1016/S0006-3495(93)81550-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kinosita K., Jr, Ashikawa I., Saita N., Yoshimura H., Itoh H., Nagayama K., Ikegami A. Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J. 1988 Jun;53(6):1015–1019. doi: 10.1016/S0006-3495(88)83181-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kinosita K., Jr, Tsong T. Y. Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta. 1979 Jul 5;554(2):479–497. doi: 10.1016/0005-2736(79)90386-9. [DOI] [PubMed] [Google Scholar]
  15. Li L. H., Hui S. W. Characterization of PEG-mediated electrofusion of human erythrocytes. Biophys J. 1994 Dec;67(6):2361–2366. doi: 10.1016/S0006-3495(94)80722-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lopez A., Rols M. P., Teissie J. 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry. 1988 Feb 23;27(4):1222–1228. doi: 10.1021/bi00404a023. [DOI] [PubMed] [Google Scholar]
  17. Marszalek P., Liu D. S., Tsong T. Y. Schwan equation and transmembrane potential induced by alternating electric field. Biophys J. 1990 Oct;58(4):1053–1058. doi: 10.1016/S0006-3495(90)82447-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Montané M. H., Dupille E., Alibert G., Teissié J. Induction of a long-lived fusogenic state in viable plant protoplasts permeabilized by electric fields. Biochim Biophys Acta. 1990 May 9;1024(1):203–207. doi: 10.1016/0005-2736(90)90227-f. [DOI] [PubMed] [Google Scholar]
  19. Neumann E., Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972 Dec 29;10(3):279–290. doi: 10.1007/BF01867861. [DOI] [PubMed] [Google Scholar]
  20. Rols M. P., Dahhou F., Teissié J. Pulse-first heterofusion of cells by electric field pulses and associated loading of macromolecules into mammalian cells. Biotechniques. 1994 Oct;17(4):762-4, 766-9. [PubMed] [Google Scholar]
  21. Rols M. P., Teissie J. Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur J Biochem. 1989 Jan 15;179(1):109–115. doi: 10.1111/j.1432-1033.1989.tb14527.x. [DOI] [PubMed] [Google Scholar]
  22. Rols M. P., Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J. 1990 Nov;58(5):1089–1098. doi: 10.1016/S0006-3495(90)82451-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rols M. P., Teissié J. Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry. 1990 May 15;29(19):4561–4567. doi: 10.1021/bi00471a009. [DOI] [PubMed] [Google Scholar]
  24. Song L. Y., Ahkong Q. F., Baldwin J. M., O'Reilly R., Lucy J. A. Divalent cations, phospholipid asymmetry and osmotic swelling in electrically-induced lysis, cell fusion and giant cell formation with human erythrocytes. Biochim Biophys Acta. 1993 May 14;1148(1):30–38. doi: 10.1016/0005-2736(93)90157-u. [DOI] [PubMed] [Google Scholar]
  25. Sowers A. E. A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J Cell Biol. 1986 Apr;102(4):1358–1362. doi: 10.1083/jcb.102.4.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sowers A. E. Electrofusion of dissimilar membrane fusion partners depends on additive contributions from each of the two different membranes. Biochim Biophys Acta. 1989 Nov 3;985(3):339–342. doi: 10.1016/0005-2736(89)90423-9. [DOI] [PubMed] [Google Scholar]
  27. Sowers A. E. Fusion events and nonfusion contents mixing events induced in erythrocyte ghosts by an electric pulse. Biophys J. 1988 Oct;54(4):619–626. doi: 10.1016/S0006-3495(88)82997-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sowers A. E., Lieber M. R. Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett. 1986 Sep 15;205(2):179–184. doi: 10.1016/0014-5793(86)80893-6. [DOI] [PubMed] [Google Scholar]
  29. Sowers A. E. The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile. Biophys J. 1987 Dec;52(6):1015–1020. doi: 10.1016/S0006-3495(87)83294-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stenger D. A., Hui S. W. Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes. J Membr Biol. 1986;93(1):43–53. doi: 10.1007/BF01871017. [DOI] [PubMed] [Google Scholar]
  31. Stoicheva N. G., Hui S. W. Electrically induced fusion of mammalian cells in the presence of polyethylene glycol. J Membr Biol. 1994 Aug;141(2):177–182. doi: 10.1007/BF00238251. [DOI] [PubMed] [Google Scholar]
  32. Teissie J., Rols M. P. Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun. 1986 Oct 15;140(1):258–266. doi: 10.1016/0006-291x(86)91084-3. [DOI] [PubMed] [Google Scholar]
  33. Teissie J., Rols M. P. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci. 1994 May 31;720:98–110. doi: 10.1111/j.1749-6632.1994.tb30438.x. [DOI] [PubMed] [Google Scholar]
  34. Teissié J., Rols M. P. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J. 1993 Jul;65(1):409–413. doi: 10.1016/S0006-3495(93)81052-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tekle E., Astumian R. D., Chock P. B. Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun. 1990 Oct 15;172(1):282–287. doi: 10.1016/s0006-291x(05)80206-2. [DOI] [PubMed] [Google Scholar]
  36. Tekle E., Astumian R. D., Chock P. B. Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4230–4234. doi: 10.1073/pnas.88.10.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wu Y., Montes J. G., Sjodin R. A. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols. Biophys J. 1992 Mar;61(3):810–815. doi: 10.1016/S0006-3495(92)81885-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu Y., Rosenberg J. D., Sowers A. E. Surface shape change during fusion of erythrocyte membranes is sensitive to membrane skeleton agents. Biophys J. 1994 Nov;67(5):1896–1905. doi: 10.1016/S0006-3495(94)80672-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zimmerberg J., Vogel S. S., Chernomordik L. V. Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct. 1993;22:433–466. doi: 10.1146/annurev.bb.22.060193.002245. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES