Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):2046–2058. doi: 10.1016/S0006-3495(98)77911-1

Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase.

P A van den Berg 1, A van Hoek 1, C D Walentas 1, R N Perham 1, A J Visser 1
PMCID: PMC1299545  PMID: 9545063

Abstract

Time-resolved polarized flavin fluorescence was used to study the active site dynamics of Escherichia coli glutathione reductase (GR). Special consideration was given to the role of Tyr177, which blocks the access to the NADPH binding-site in the crystal structure of the enzyme. By comparing wild-type GR with the mutant enzymes Y177F and Y177G, a fluorescence lifetime of 7 ps that accounts for approximately 90% of the fluorescence decay could be attributed to quenching by Y177. Based on the temperature invariance for this lifetime, and the very high quenching rate, electron transfer from Y177 to the light-excited isoalloxazine part of flavin adenine dinucleotide (FAD) is proposed as the mechanism of flavin fluorescence quenching. Contrary to the mutant enzymes, wild-type GR shows a rapid fluorescence depolarization. This depolarization process is likely to originate from a transient charge transfer interaction between Y177 and the light-excited FAD, and not from internal mobility of the flavin, as has previously been proposed. Based on the fluorescence lifetime distributions, the mutants Y177F and Y177G have a more flexible protein structure than wild-type GR: in the range of 223 K to 277 K in 80% glycerol, both tyrosine mutants mimic the closely related enzyme dihydrolipoyl dehydrogenase. The fluorescence intensity decays of the GR enzymes can only be explained by the existence of multiple quenching sites in the protein. Although structural fluctuations are likely to contribute to the nonexponential decay and the probability of quenching by a specific site, the concept of conformational substates need not be invoked to explain the heterogeneous fluorescence dynamics.

Full Text

The Full Text of this article is available as a PDF (178.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J. 1987 Jun;51(6):925–936. doi: 10.1016/S0006-3495(87)83420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey S., Fairlamb A. H., Hunter W. N. Structure of trypanothione reductase from Crithidia fasciculata at 2.6 A resolution; enzyme-NADP interactions at 2.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):139–154. doi: 10.1107/S0907444993011898. [DOI] [PubMed] [Google Scholar]
  3. Bajzer Z., Prendergast F. G. A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys J. 1993 Dec;65(6):2313–2323. doi: 10.1016/S0006-3495(93)81325-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barry B. A., Babcock G. T. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7099–7103. doi: 10.1073/pnas.84.20.7099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bashir A., Perham R. N., Scrutton N. S., Berry A. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase. Biochem J. 1995 Dec 1;312(Pt 2):527–533. doi: 10.1042/bj3120527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bastiaens P. I., van Hoek A., Benen J. A., Brochon J. C., Visser A. J. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J. 1992 Sep;63(3):839–853. doi: 10.1016/S0006-3495(92)81659-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bastiaens P. I., van Hoek A., Wolkers W. F., Brochon J. C., Visser A. J. Comparison of the dynamical structures of lipoamide dehydrogenase and glutathione reductase by time-resolved polarized flavin fluorescence. Biochemistry. 1992 Aug 11;31(31):7050–7060. doi: 10.1021/bi00146a005. [DOI] [PubMed] [Google Scholar]
  8. Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
  9. Benen J., van Berkel W., Zak Z., Visser T., Veeger C., de Kok A. Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Spectral properties of wild type and mutated enzymes. Eur J Biochem. 1991 Dec 18;202(3):863–872. doi: 10.1111/j.1432-1033.1991.tb16444.x. [DOI] [PubMed] [Google Scholar]
  10. Berry A., Scrutton N. S., Perham R. N. Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase. Biochemistry. 1989 Feb 7;28(3):1264–1269. doi: 10.1021/bi00429a047. [DOI] [PubMed] [Google Scholar]
  11. Bismuto E., Irace G., Sirangelo I., Gratton E. Pressure-induced perturbation of ANS-apomyoglobin complex: frequency domain fluorescence studies on native and acidic compact states. Protein Sci. 1996 Jan;5(1):121–126. doi: 10.1002/pro.5560050115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bradbury S. L., Jakoby W. B. Glycerol as an enzyme-stabilizing agent: effects on aldehyde dehydrogenase. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2373–2376. doi: 10.1073/pnas.69.9.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
  14. Calcaterra N. B., Picó G. A., Orellano E. G., Ottado J., Carrillo N., Ceccarelli E. A. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Biochemistry. 1995 Oct 3;34(39):12842–12848. doi: 10.1021/bi00039a045. [DOI] [PubMed] [Google Scholar]
  15. Careri G., Fasella P., Gratton E. Enzyme dynamics: the statistical physics approach. Annu Rev Biophys Bioeng. 1979;8:69–97. doi: 10.1146/annurev.bb.08.060179.000441. [DOI] [PubMed] [Google Scholar]
  16. Deonarain M. P., Berry A., Scrutton N. S., Perham R. N. Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99. Biochemistry. 1989 Dec 12;28(25):9602–9607. doi: 10.1021/bi00451a008. [DOI] [PubMed] [Google Scholar]
  17. Deonarain M. P., Scrutton N. S., Berry A., Perham R. N. Directed mutagenesis of the redox-active disulphide bridge in glutathione reductase from Escherichia coli. Proc Biol Sci. 1990 Sep 22;241(1302):179–186. doi: 10.1098/rspb.1990.0083. [DOI] [PubMed] [Google Scholar]
  18. Draper R. D., Ingraham L. L. A potentiometric study of the flavin semiquinone equilibrium. Arch Biochem Biophys. 1968 Jun;125(3):802–808. doi: 10.1016/0003-9861(68)90517-1. [DOI] [PubMed] [Google Scholar]
  19. Ekberg M., Sahlin M., Eriksson M., Sjöberg B. M. Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase. J Biol Chem. 1996 Aug 23;271(34):20655–20659. doi: 10.1074/jbc.271.34.20655. [DOI] [PubMed] [Google Scholar]
  20. Ermler U., Schulz G. E. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution. Proteins. 1991;9(3):174–179. doi: 10.1002/prot.340090303. [DOI] [PubMed] [Google Scholar]
  21. Ferreira S. T., Stella L., Gratton E. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue. Biophys J. 1994 Apr;66(4):1185–1196. doi: 10.1016/S0006-3495(94)80901-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Frauenfelder H., Gratton E. Protein dynamics and hydration. Methods Enzymol. 1986;127:207–216. doi: 10.1016/0076-6879(86)27017-2. [DOI] [PubMed] [Google Scholar]
  23. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  24. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  25. Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
  26. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  27. Greer S., Perham R. N. Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry. 1986 May 6;25(9):2736–2742. doi: 10.1021/bi00357a069. [DOI] [PubMed] [Google Scholar]
  28. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  29. Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
  30. Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
  31. Karplus P. A., Schulz G. E. Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol. 1987 Jun 5;195(3):701–729. doi: 10.1016/0022-2836(87)90191-4. [DOI] [PubMed] [Google Scholar]
  32. Karplus P. A., Schulz G. E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. J Mol Biol. 1989 Nov 5;210(1):163–180. doi: 10.1016/0022-2836(89)90298-2. [DOI] [PubMed] [Google Scholar]
  33. Li R., Bianchet M. A., Talalay P., Amzel L. M. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8846–8850. doi: 10.1073/pnas.92.19.8846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Livesey A. K., Brochon J. C. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J. 1987 Nov;52(5):693–706. doi: 10.1016/S0006-3495(87)83264-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maeda-Yorita K., Russell G. C., Guest J. R., Massey V., Williams C. H., Jr Properties of lipoamide dehydrogenase altered by site-directed mutagenesis at a key residue (I184Y) in the pyridine nucleotide binding domain. Biochemistry. 1991 Dec 24;30(51):11788–11795. doi: 10.1021/bi00115a008. [DOI] [PubMed] [Google Scholar]
  36. Mattevi A., Schierbeek A. J., Hol W. G. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 A resolution. A comparison with the structure of glutathione reductase. J Mol Biol. 1991 Aug 20;220(4):975–994. doi: 10.1016/0022-2836(91)90367-f. [DOI] [PubMed] [Google Scholar]
  37. Millar D. P. Time-resolved fluorescence spectroscopy. Curr Opin Struct Biol. 1996 Oct;6(5):637–642. doi: 10.1016/s0959-440x(96)80030-3. [DOI] [PubMed] [Google Scholar]
  38. Mittl P. R., Schulz G. E. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Protein Sci. 1994 May;3(5):799–809. doi: 10.1002/pro.5560030509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
  40. Mérola F., Rigler R., Holmgren A., Brochon J. C. Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry. 1989 Apr 18;28(8):3383–3398. doi: 10.1021/bi00434a038. [DOI] [PubMed] [Google Scholar]
  41. O'Donnell M. E., Williams C. H., Jr Proton stoichiometry in the reduction of the FAD and disulfide of Escherichia coli thioredoxin reductase. Evidence for a base at the active site. J Biol Chem. 1983 Nov 25;258(22):13795–13805. [PubMed] [Google Scholar]
  42. Ogle T. F. Action of glycerol and sodium molybdate in stabilization of the progesterone receptor from rat trophoblast. J Biol Chem. 1983 Apr 25;258(8):4982–4988. [PubMed] [Google Scholar]
  43. Pai E. F., Karplus P. A., Schulz G. E. Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry. 1988 Jun 14;27(12):4465–4474. doi: 10.1021/bi00412a038. [DOI] [PubMed] [Google Scholar]
  44. Pai E. F., Schulz G. E. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. J Biol Chem. 1983 Feb 10;258(3):1752–1757. [PubMed] [Google Scholar]
  45. Parsonage D., Claiborne A. Analysis of the kinetic and redox properties of NADH peroxidase C42S and C42A mutants lacking the cysteine-sulfenic acid redox center. Biochemistry. 1995 Jan 17;34(2):435–441. doi: 10.1021/bi00002a007. [DOI] [PubMed] [Google Scholar]
  46. Pourplanche C., Lambert C., Berjot M., Marx J., Chopard C., Alix A. J., Larreta-Garde V. Conformational changes of lipoxygenase (LOX) in modified environments. Contribution to the variation in specificity of soybean LOX type 1. J Biol Chem. 1994 Dec 16;269(50):31585–31591. [PubMed] [Google Scholar]
  47. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  48. Prince R. C. Tyrosine radicals. Trends Biochem Sci. 1988 Aug;13(8):286–288. doi: 10.1016/0968-0004(88)90119-3. [DOI] [PubMed] [Google Scholar]
  49. Raibekas A. A., Massey V. Glycerol-induced development of catalytically active conformation of Crotalus adamanteus L-amino acid oxidase in vitro. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7546–7551. doi: 10.1073/pnas.93.15.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Reichard P., Ehrenberg A. Ribonucleotide reductase--a radical enzyme. Science. 1983 Aug 5;221(4610):514–519. doi: 10.1126/science.6306767. [DOI] [PubMed] [Google Scholar]
  51. Rice D. W., Schulz G. E., Guest J. R. Structural relationship between glutathione reductase and lipoamide dehydrogenase. J Mol Biol. 1984 Apr 15;174(3):483–496. doi: 10.1016/0022-2836(84)90332-2. [DOI] [PubMed] [Google Scholar]
  52. Scrutton N. S., Berry A., Perham R. N. Purification and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli. Biochem J. 1987 Aug 1;245(3):875–880. doi: 10.1042/bj2450875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  54. Serre L., Vellieux F. M., Medina M., Gomez-Moreno C., Fontecilla-Camps J. C., Frey M. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. J Mol Biol. 1996 Oct 18;263(1):20–39. doi: 10.1006/jmbi.1996.0553. [DOI] [PubMed] [Google Scholar]
  55. Thieme R., Pai E. F., Schirmer R. H., Schulz G. E. Three-dimensional structure of glutathione reductase at 2 A resolution. J Mol Biol. 1981 Nov 15;152(4):763–782. doi: 10.1016/0022-2836(81)90126-1. [DOI] [PubMed] [Google Scholar]
  56. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  57. Visser A. J., Lee J. Lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum. A fluorescence study of the protein-ligand equilibrium. Biochemistry. 1980 Sep 2;19(18):4366–4372. doi: 10.1021/bi00559a033. [DOI] [PubMed] [Google Scholar]
  58. Vos K., van Hoek A., Visser A. J. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Eur J Biochem. 1987 May 15;165(1):55–63. doi: 10.1111/j.1432-1033.1987.tb11193.x. [DOI] [PubMed] [Google Scholar]
  59. Welch G. R., Somogyi B., Damjanovich S. The role of protein fluctuations in enzyme action: a review. Prog Biophys Mol Biol. 1982;39(2):109–146. doi: 10.1016/0079-6107(83)90015-9. [DOI] [PubMed] [Google Scholar]
  60. Wilkinson K. D., Williams C. H., Jr Evidence for multiple electronic forms of two-electron-reduced lipoamide dehydrogenase from Escherichia coli. J Biol Chem. 1979 Feb 10;254(3):852–862. [PubMed] [Google Scholar]
  61. Yedgar S., Tetreau C., Gavish B., Lavalette D. Viscosity dependence of O2 escape from respiratory proteins as a function of cosolvent molecular weight. Biophys J. 1995 Feb;68(2):665–670. doi: 10.1016/S0006-3495(95)80227-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zhang Y., Bond C. S., Bailey S., Cunningham M. L., Fairlamb A. H., Hunter W. N. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Protein Sci. 1996 Jan;5(1):52–61. doi: 10.1002/pro.5560050107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES