Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2210–2222. doi: 10.1016/S0006-3495(98)77930-5

Temporally and spectrally resolved imaging microscopy of lanthanide chelates.

G Vereb 1, E Jares-Erijman 1, P R Selvin 1, T M Jovin 1
PMCID: PMC1299564  PMID: 9591648

Abstract

The combination of temporal and spectral resolution in fluorescence microscopy based on long-lived luminescent labels offers a dramatic increase in contrast and probe selectivity due to the suppression of scattered light and short-lived autofluorescence. We describe various configurations of a fluorescence microscope integrating spectral and microsecond temporal resolution with conventional digital imaging based on CCD cameras. The high-power, broad spectral distribution and microsecond time resolution provided by microsecond xenon flashlamps offers increased luminosity with recently developed fluorophores with lifetimes in the submicrosecond to microsecond range. On the detection side, a gated microchannel plate intensifier provides the required time resolution and amplification of the signal. Spectral resolution is achieved with a dual grating stigmatic spectrograph and has been applied to the analysis of luminescent markers of cytochemical specimens in situ and of very small volume elements in microchambers. The additional introduction of polarization optics enables the determination of emission polarization; this parameter reflects molecular orientation and rotational mobility and, consequently, the nature of the microenvironment. The dual spectral and temporal resolution modes of acquisition complemented by a posteriori image analysis gated on the spatial, spectral, and temporal dimensions lead to a very flexible and versatile tool. We have used a newly developed lanthanide chelate, Eu-DTPA-cs124, to demonstrate these capabilities. Such compounds are good labels for time-resolved imaging microscopy and for the estimation of molecular proximity in the microscope by fluorescence (luminescence) resonance energy transfer and of molecular rotation via fluorescence depolarization. We describe the spectral distribution, polarization states, and excited-state lifetimes of the lanthanide chelate crystals imaged in the microscope.

Full Text

The Full Text of this article is available as a PDF (445.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altamirano-Bustamante A., Barnard G., Kohen F. Direct time-resolved fluorescence immunoassay for serum oestradiol based on the idiotypic anti-idiotypic approach. J Immunol Methods. 1991 Apr 8;138(1):95–101. doi: 10.1016/0022-1759(91)90068-q. [DOI] [PubMed] [Google Scholar]
  2. Andreev O. A., Andreeva A. L., Borejdo J. Polarization of fluorescently labeled myosin subfragment-1 fully or partially decorating muscle fibers and myofibrils. Biophys J. 1993 Sep;65(3):1027–1038. doi: 10.1016/S0006-3495(93)81161-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Austin R. H., Chan S. S., Jovin T. M. Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5650–5654. doi: 10.1073/pnas.76.11.5650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnard G., Kohen F., Mikola H., Lovgren T. The development of non-separation time-resolved fluoroimmunoassays for the measurement of urinary metabolites. J Biolumin Chemilumin. 1989 Jul;4(1):177–184. doi: 10.1002/bio.1170040126. [DOI] [PubMed] [Google Scholar]
  5. Beverloo H. B., van Schadewijk A., Bonnet J., van der Geest R., Runia R., Verwoerd N. P., Vrolijk J., Ploem J. S., Tanke H. J. Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry. 1992;13(6):561–570. doi: 10.1002/cyto.990130603. [DOI] [PubMed] [Google Scholar]
  6. Burroughs S. E., Horrocks W. D., Jr, Ren H., Klee C. B. Characterization of the lanthanide ion-binding properties of calcineurin-B using laser-induced luminescence spectroscopy. Biochemistry. 1994 Aug 30;33(34):10428–10436. doi: 10.1021/bi00200a026. [DOI] [PubMed] [Google Scholar]
  7. Churchich J. E. Binding of a fluorescent nucleotide analog to Hsc70. The effect of peptide protein interactions on the luminescence properties of the probe. Eur J Biochem. 1995 Aug 1;231(3):736–741. doi: 10.1111/j.1432-1033.1995.0736d.x. [DOI] [PubMed] [Google Scholar]
  8. Ci Y. X., Yang X. D., Chang W. B. Fluorescence labelling with europium chelate of beta-diketones and application in time-resolved fluoroimmunoassays (TR-FIA). J Immunol Methods. 1995 Feb 27;179(2):233–241. doi: 10.1016/0022-1759(94)00289-9. [DOI] [PubMed] [Google Scholar]
  9. Clark I. D., MacManus J. P., Banville D., Szabo A. G. A study of sensitized lanthanide luminescence in an engineered calcium-binding protein. Anal Biochem. 1993 Apr;210(1):1–6. doi: 10.1006/abio.1993.1142. [DOI] [PubMed] [Google Scholar]
  10. Dahlén P., Liukkonen L., Kwiatkowski M., Hurskainen P., Iitiä A., Siitari H., Ylikoski J., Mukkala V. M., Lövgren T. Europium-labeled oligonucleotide hybridization probes: preparation and properties. Bioconjug Chem. 1994 May-Jun;5(3):268–272. doi: 10.1021/bc00027a013. [DOI] [PubMed] [Google Scholar]
  11. Damjanovich S., Trón L., Szöllösi J., Zidovetzki R., Vaz W. L., Regateiro F., Arndt-Jovin D. J., Jovin T. M. Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5985–5989. doi: 10.1073/pnas.80.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dickson E. F., Pollak A., Diamandis E. P. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J Photochem Photobiol B. 1995 Jan;27(1):3–19. doi: 10.1016/1011-1344(94)07086-4. [DOI] [PubMed] [Google Scholar]
  13. Dix J. A., Verkman A. S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. Biophys J. 1990 Feb;57(2):231–240. doi: 10.1016/S0006-3495(90)82526-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gadella T. W., Jr, Jovin T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995 Jun;129(6):1543–1558. doi: 10.1083/jcb.129.6.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hennink E. J., de Haas R., Verwoerd N. P., Tanke H. J. Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry. 1996 Aug 1;24(4):312–320. doi: 10.1002/(SICI)1097-0320(19960801)24:4<312::AID-CYTO2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  16. Heyduk E., Heyduk T. Thiol-reactive, luminescent Europium chelates: luminescence probes for resonance energy transfer distance measurements in biomolecules. Anal Biochem. 1997 Jun 1;248(2):216–227. doi: 10.1006/abio.1997.2148. [DOI] [PubMed] [Google Scholar]
  17. Joshi N. B., Shamboo A. E. Distances between functional sites in cardiac sarcoplasmic reticulum (Ca2+ +Mg2+)-ATPase. Inter-lanthanide energy transfer. Eur J Biochem. 1988 Dec 15;178(2):483–487. doi: 10.1111/j.1432-1033.1988.tb14474.x. [DOI] [PubMed] [Google Scholar]
  18. Jovin T. M., Bartholdi M., Vaz W. L., Austin R. H. Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy. Ann N Y Acad Sci. 1981;366:176–196. doi: 10.1111/j.1749-6632.1981.tb20753.x. [DOI] [PubMed] [Google Scholar]
  19. Kwiatkowski M., Samiotaki M., Lamminmäki U., Mukkala V. M., Landegren U. Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucleic Acids Res. 1994 Jul 11;22(13):2604–2611. doi: 10.1093/nar/22.13.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwok F., Churchich J. E. The binding of substrates and inhibitors to the metal center of myoinositol monophosphatase. FEBS Lett. 1994 Jun 13;346(2-3):304–306. doi: 10.1016/0014-5793(94)00506-0. [DOI] [PubMed] [Google Scholar]
  21. König K., So P. T., Mantulin W. W., Tromberg B. J., Gratton E. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc. 1996 Sep;183(Pt 3):197–204. [PubMed] [Google Scholar]
  22. Lakowicz J. R., Szmacinski H., Nowaczyk K., Lederer W. J., Kirby M. S., Johnson M. L. Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium. 1994 Jan;15(1):7–27. doi: 10.1016/0143-4160(94)90100-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li L., Szmacinski H., Lakowicz J. R. Synthesis and luminescence spectral characterization of long-lifetime lipid metal-ligand probes. Anal Biochem. 1997 Jan 1;244(1):80–85. doi: 10.1006/abio.1996.9869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li M., Selvin P. R. Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements. Bioconjug Chem. 1997 Mar-Apr;8(2):127–132. doi: 10.1021/bc960085m. [DOI] [PubMed] [Google Scholar]
  25. Marriott G., Clegg R. M., Arndt-Jovin D. J., Jovin T. M. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J. 1991 Dec;60(6):1374–1387. doi: 10.1016/S0006-3495(91)82175-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marriott G., Heidecker M., Diamandis E. P., Yan-Marriott Y. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex. Biophys J. 1994 Sep;67(3):957–965. doi: 10.1016/S0006-3495(94)80597-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martini J. L., Tetreau C., Pochon F., Tourbez H., Lentz J. M., Lavalette D. On the mechanism of energy transfer to Tb3+ ions in proteins. A time-resolved luminescence study of the Tb-elastase complex. Eur J Biochem. 1993 Feb 1;211(3):467–473. doi: 10.1111/j.1432-1033.1993.tb17572.x. [DOI] [PubMed] [Google Scholar]
  28. Mathis G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem. 1995 Sep;41(9):1391–1397. [PubMed] [Google Scholar]
  29. Mickols W., Maestre M. F., Tinoco I., Jr, Embury S. H. Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6527–6531. doi: 10.1073/pnas.82.19.6527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Root D. D. In situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5685–5690. doi: 10.1073/pnas.94.11.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Selvin P. R. Fluorescence resonance energy transfer. Methods Enzymol. 1995;246:300–334. doi: 10.1016/0076-6879(95)46015-2. [DOI] [PubMed] [Google Scholar]
  32. Selvin P. R., Hearst J. E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10024–10028. doi: 10.1073/pnas.91.21.10024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seveus L., Väisälä M., Syrjänen S., Sandberg M., Kuusisto A., Harju R., Salo J., Hemmilä I., Kojola H., Soini E. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry. 1992;13(4):329–338. doi: 10.1002/cyto.990130402. [DOI] [PubMed] [Google Scholar]
  34. Szmacinski H., Terpetschnig E., Lakowicz J. R. Synthesis and evaluation of Ru-complexes as anisotropy probes for protein hydrodynamics and immunoassays of high-molecular-weight antigens. Biophys Chem. 1996 Nov 29;62(1-3):109–120. doi: 10.1016/s0301-4622(96)02199-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Szöllösi J., Trón L., Damjanovich S., Helliwell S. H., Arndt-Jovin D., Jovin T. M. Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry. 1984 Mar;5(2):210–216. doi: 10.1002/cyto.990050216. [DOI] [PubMed] [Google Scholar]
  36. Terpetschnig E., Szmacinski H., Lakowicz J. R. Fluorescence polarization immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand complex. Anal Biochem. 1995 May 1;227(1):140–147. doi: 10.1006/abio.1995.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Terpetschnig E., Szmacinski H., Lakowicz J. R. Fluorescence polarization immunoassay of a high-molecular-weight antigen using a long wavelength-absorbing and laser diode-excitable metal-ligand complex. Anal Biochem. 1996 Aug 15;240(1):54–59. doi: 10.1006/abio.1996.0330. [DOI] [PubMed] [Google Scholar]
  38. Terpetschnig E., Szmacinski H., Malak H., Lakowicz J. R. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys J. 1995 Jan;68(1):342–350. doi: 10.1016/S0006-3495(95)80193-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Verkman A. S., Armijo M., Fushimi K. Construction and evaluation of a frequency-domain epifluorescence microscope for lifetime and anisotropy decay measurements in subcellular domains. Biophys Chem. 1991 Apr;40(1):117–125. doi: 10.1016/0301-4622(91)85036-p. [DOI] [PubMed] [Google Scholar]
  40. Verwoerd N. P., Hennink E. J., Bonnet J., Van der Geest C. R., Tanke H. J. Use of ferro-electric liquid crystal shutters for time-resolved fluorescence microscopy. Cytometry. 1994 Jun 1;16(2):113–117. doi: 10.1002/cyto.990160204. [DOI] [PubMed] [Google Scholar]
  41. Walters J. D., Johnson J. D. Terbium as a luminescent probe of metal-binding sites in protein kinase C. J Biol Chem. 1990 Mar 15;265(8):4223–4226. [PubMed] [Google Scholar]
  42. Youn H. J., Terpetschnig E., Szmacinski H., Lakowicz J. R. Fluorescence energy transfer immunoassay based on a long-lifetime luminescent metal-ligand complex. Anal Biochem. 1995 Nov 20;232(1):24–30. doi: 10.1006/abio.1995.9966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zidovetzki R., Johnson D. A., Arndt-Jovin D. J., Jovin T. M. Rotational mobility of high-affinity epidermal growth factor receptors on the surface of living A431 cells. Biochemistry. 1991 Jun 25;30(25):6162–6166. doi: 10.1021/bi00239a012. [DOI] [PubMed] [Google Scholar]
  44. de Haas R. R., Verwoerd N. P., van der Corput M. P., van Gijlswijk R. P., Siitari H., Tanke H. J. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J Histochem Cytochem. 1996 Oct;44(10):1091–1099. doi: 10.1177/44.10.8813073. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES