Abstract
The impact of folding funnels and folding simulations on the way experimentalists interpret results is examined. The image of the transition state has changed from a unique species that has a strained configuration, with a correspondingly high free energy, to a more ordinary folding intermediate, whose balance between limited conformational entropy and stabilizing contacts places it at the top of the free energy barrier. Evidence for a broad transition barrier comes from studies showing that mutations can change the position of the barrier. The main controversial issue now is whether populated folding intermediates are productive on-pathway intermediates or dead-end traps. Direct experimental evidence is needed. Theories suggesting that populated intermediates are trapped in a glasslike state are usually based on mechanisms which imply that trapping would only be extremely short-lived (e.g., nanoseconds) in water at 25 degrees C. There seems to be little experimental evidence for long-lived trapping in monomers, if folding aggregates are excluded. On the other hand, there is good evidence for kinetic trapping in dimers. alpha-Helix formation is currently the fastest known process in protein folding, and incipient helices are present at the start of folding. Fast helix formation has the effect of narrowing drastically the choice of folding routes. Thus helix formation can direct folding. It changes the folding metaphor from pouring liquid down a folding funnel to a train leaving a switchyard with only a few choices of exit tracks.
Full Text
The Full Text of this article is available as a PDF (78.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
- Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G., Gallagher T. Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. Biochemistry. 1995 Aug 15;34(32):10310–10318. doi: 10.1021/bi00032a026. [DOI] [PubMed] [Google Scholar]
- Burton R. E., Huang G. S., Daugherty M. A., Calderone T. L., Oas T. G. The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat Struct Biol. 1997 Apr;4(4):305–310. doi: 10.1038/nsb0497-305. [DOI] [PubMed] [Google Scholar]
- Chen B. L., Baase W. A., Schellman J. A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry. 1989 Jan 24;28(2):691–699. doi: 10.1021/bi00428a042. [DOI] [PubMed] [Google Scholar]
- Cook K. H., Schmid F. X., Baldwin R. L. Role of proline isomerization in folding of ribonuclease A at low temperatures. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6157–6161. doi: 10.1073/pnas.76.12.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton T. E. The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J Mol Biol. 1975 Jun 25;95(2):167–199. doi: 10.1016/0022-2836(75)90389-7. [DOI] [PubMed] [Google Scholar]
- Dabora J. M., Pelton J. G., Marqusee S. Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry. 1996 Sep 17;35(37):11951–11958. doi: 10.1021/bi9611671. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
- Dinner A. R., Sali A., Karplus M. The folding mechanism of larger model proteins: role of native structure. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8356–8361. doi: 10.1073/pnas.93.16.8356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle R., Simons K., Qian H., Baker D. Local interactions and the optimization of protein folding. Proteins. 1997 Nov;29(3):282–291. doi: 10.1002/(sici)1097-0134(199711)29:3<282::aid-prot3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Muñoz V., Thompson P. A., Chan C. K., Hofrichter J. Submillisecond kinetics of protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):10–14. doi: 10.1016/s0959-440x(97)80003-6. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Thompson P. A., Chan C. K., Hage S. J., Hofrichter J. Fast events in protein folding. Structure. 1996 Oct 15;4(10):1133–1139. doi: 10.1016/s0969-2126(96)00121-9. [DOI] [PubMed] [Google Scholar]
- Eliezer D., Chiba K., Tsuruta H., Doniach S., Hodgson K. O., Kihara H. Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys J. 1993 Aug;65(2):912–917. doi: 10.1016/S0006-3495(93)81124-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elöve G. A., Bhuyan A. K., Roder H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry. 1994 Jun 7;33(22):6925–6935. doi: 10.1021/bi00188a023. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Garel J. R., Baldwin R. L. Both the fast and slow refolding reactions of ribonuclease A yield native enzyme. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3347–3351. doi: 10.1073/pnas.70.12.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3709–3713. doi: 10.1073/pnas.94.8.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenewald B., Nicola C. U., Lustig A., Schwarz G., Klump H. Kinetics of the helix-coil transition of a polypeptide with non-ionic side groups, derived from ultrasonic relaxation measurements. Biophys Chem. 1979 Jan;9(2):137–147. doi: 10.1016/0301-4622(79)87008-8. [DOI] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Szabo A., Eaton W. A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11615–11617. doi: 10.1073/pnas.93.21.11615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammes G. G., Roberts P. B. Dynamics of the helix--coil transition in poly-L-ornithine. J Am Chem Soc. 1969 Mar 26;91(7):1812–1816. doi: 10.1021/ja01035a036. [DOI] [PubMed] [Google Scholar]
- Harrison S. C., Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad Sci U S A. 1985 Jun;82(12):4028–4030. doi: 10.1073/pnas.82.12.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig B., Cohen F. E. Adding backbone to protein folding: why proteins are polypeptides. Fold Des. 1996;1(1):R17–R20. doi: 10.1016/S1359-0278(96)00005-3. [DOI] [PubMed] [Google Scholar]
- Houry W. A., Rothwarf D. M., Scheraga H. A. A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways. Biochemistry. 1994 Mar 8;33(9):2516–2530. doi: 10.1021/bi00175a022. [DOI] [PubMed] [Google Scholar]
- Houry W. A., Scheraga H. A. Nature of the unfolded state of ribonuclease A: effect of cis-trans X-Pro peptide bond isomerization. Biochemistry. 1996 Sep 10;35(36):11719–11733. doi: 10.1021/bi960745a. [DOI] [PubMed] [Google Scholar]
- Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
- Ikai A., Tanford C. Kinetic evidence for incorrectly folded intermediate states in the refolding of denatured proteins. Nature. 1971 Mar 12;230(5289):100–102. doi: 10.1038/230100a0. [DOI] [PubMed] [Google Scholar]
- Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
- Jamin M., Baldwin R. L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nat Struct Biol. 1996 Jul;3(7):613–618. doi: 10.1038/nsb0796-613. [DOI] [PubMed] [Google Scholar]
- Jennings P. A., Finn B. E., Jones B. E., Matthews C. R. A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry. 1993 Apr 13;32(14):3783–3789. doi: 10.1021/bi00065a034. [DOI] [PubMed] [Google Scholar]
- Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
- Karplus M., Sali A. Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol. 1995 Feb;5(1):58–73. doi: 10.1016/0959-440x(95)80010-x. [DOI] [PubMed] [Google Scholar]
- Kay M. S., Baldwin R. L. Packing interactions in the apomyglobin folding intermediate. Nat Struct Biol. 1996 May;3(5):439–445. doi: 10.1038/nsb0596-439. [DOI] [PubMed] [Google Scholar]
- Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
- Klimov D. K., Thirumalai D. Factors governing the foldability of proteins. Proteins. 1996 Dec;26(4):411–441. doi: 10.1002/(SICI)1097-0134(199612)26:4<411::AID-PROT4>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Leopold P. E., Montal M., Onuchic J. N. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721–8725. doi: 10.1073/pnas.89.18.8721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt M. Effect of proline residues on protein folding. J Mol Biol. 1981 Jan 5;145(1):251–263. doi: 10.1016/0022-2836(81)90342-9. [DOI] [PubMed] [Google Scholar]
- Marmorino J. L., Pielak G. J. A native tertiary interaction stabilizes the A state of cytochrome c. Biochemistry. 1995 Mar 14;34(10):3140–3143. doi: 10.1021/bi00010a002. [DOI] [PubMed] [Google Scholar]
- Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milla M. E., Brown B. M., Waldburger C. D., Sauer R. T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry. 1995 Oct 24;34(42):13914–13919. doi: 10.1021/bi00042a024. [DOI] [PubMed] [Google Scholar]
- Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
- Park B. H., Levitt M. The complexity and accuracy of discrete state models of protein structure. J Mol Biol. 1995 Jun 2;249(2):493–507. doi: 10.1006/jmbi.1995.0311. [DOI] [PubMed] [Google Scholar]
- Pohl F. M. On the kinetics of structural transition I of some pancreatic proteins. FEBS Lett. 1969 Apr;3(1):60–64. doi: 10.1016/0014-5793(69)80097-9. [DOI] [PubMed] [Google Scholar]
- Raschke T. M., Marqusee S. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat Struct Biol. 1997 Apr;4(4):298–304. doi: 10.1038/nsb0497-298. [DOI] [PubMed] [Google Scholar]
- Rietveld A. W., Ferreira S. T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: persistent heterogeneity of a protein dimer. Biochemistry. 1996 Jun 18;35(24):7743–7751. doi: 10.1021/bi952118b. [DOI] [PubMed] [Google Scholar]
- Robinson C. R., Sauer R. T. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor. Biochemistry. 1996 Nov 5;35(44):13878–13884. doi: 10.1021/bi961375t. [DOI] [PubMed] [Google Scholar]
- SCHWARZ G. ON THE KINETICS OF THE HELIX-COIL TRANSITION OF POLYPEPTIDES IN SOLUTION. J Mol Biol. 1965 Jan;11:64–77. doi: 10.1016/s0022-2836(65)80171-1. [DOI] [PubMed] [Google Scholar]
- Scalley M. L., Yi Q., Gu H., McCormack A., Yates J. R., 3rd, Baker D. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L. Biochemistry. 1997 Mar 18;36(11):3373–3382. doi: 10.1021/bi9625758. [DOI] [PubMed] [Google Scholar]
- Schindler T., Schmid F. X. Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry. 1996 Dec 24;35(51):16833–16842. doi: 10.1021/bi962090j. [DOI] [PubMed] [Google Scholar]
- Schmid F. X., Baldwin R. L. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4764–4768. doi: 10.1073/pnas.75.10.4764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid F. X., Blaschek H. A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem. 1981;114(1):111–117. doi: 10.1111/j.1432-1033.1981.tb06180.x. [DOI] [PubMed] [Google Scholar]
- Schmid F. X. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates. Biochemistry. 1983 Sep 27;22(20):4690–4696. doi: 10.1021/bi00289a013. [DOI] [PubMed] [Google Scholar]
- Schulman B. A., Kim P. S. Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of a protein's overall topology. Nat Struct Biol. 1996 Aug;3(8):682–687. doi: 10.1038/nsb0896-682. [DOI] [PubMed] [Google Scholar]
- Shakhnovich E., Abkevich V., Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature. 1996 Jan 4;379(6560):96–98. doi: 10.1038/379096a0. [DOI] [PubMed] [Google Scholar]
- Silow M., Oliveberg M. Transient aggregates in protein folding are easily mistaken for folding intermediates. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6084–6086. doi: 10.1073/pnas.94.12.6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinclair J. F., Ziegler M. M., Baldwin T. O. Kinetic partitioning during protein folding yields multiple native states. Nat Struct Biol. 1994 May;1(5):320–326. doi: 10.1038/nsb0594-320. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Jackson S., Wilk R. R., Englander S. W., DeGrado W. F. The role of helix formation in the folding of a fully alpha-helical coiled coil. Proteins. 1996 Apr;24(4):427–432. doi: 10.1002/(SICI)1097-0134(199604)24:4<427::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Mayne L., Englander S. W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins. 1996 Apr;24(4):413–426. doi: 10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
- Subramaniam V., Steel D. G., Gafni A. In vitro renaturation of bovine beta-lactoglobulin A leads to a biologically active but incompletely refolded state. Protein Sci. 1996 Oct;5(10):2089–2094. doi: 10.1002/pro.5560051015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi S., Yeh S. R., Das T. K., Chan C. K., Gottfried D. S., Rousseau D. L. Folding of cytochrome c initiated by submillisecond mixing. Nat Struct Biol. 1997 Jan;4(1):44–50. doi: 10.1038/nsb0197-44. [DOI] [PubMed] [Google Scholar]
- Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
- Tani F., Shirai N., Onishi T., Venelle F., Yasumoto K., Doi E. Temperature control for kinetic refolding of heat-denatured ovalbumin. Protein Sci. 1997 Jul;6(7):1491–1502. doi: 10.1002/pro.5560060713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoden J. B., Holden H. M., Fisher A. J., Sinclair J. F., Wesenberg G., Baldwin T. O., Rayment I. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap. Protein Sci. 1997 Jan;6(1):13–23. doi: 10.1002/pro.5560060103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsong T. Y., Baldwin R. L. A sequential model of nucleation-dependent protein folding: kinetic studies of ribonuclease A. J Mol Biol. 1972 Feb 14;63(3):453–469. doi: 10.1016/0022-2836(72)90440-8. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y., Baldwin R. L., Elson E. L. The sequential unfolding of ribonuclease A: detection of a fast initial phase in the kinetics of unfolding. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2712–2715. doi: 10.1073/pnas.68.11.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsong T. Y., Baldwin R. L. Kinetic evidence for intermediate states in the unfolding of chymotrypsinogen A. J Mol Biol. 1972 Aug 14;69(1):145–148. doi: 10.1016/0022-2836(72)90029-0. [DOI] [PubMed] [Google Scholar]
- Wang Z., Mottonen J., Goldsmith E. J. Kinetically controlled folding of the serpin plasminogen activator inhibitor 1. Biochemistry. 1996 Dec 24;35(51):16443–16448. doi: 10.1021/bi961214p. [DOI] [PubMed] [Google Scholar]
- Weber G. Phenomenological description of the association of protein subunits subjected to conformational drift. Effects of dilution and of hydrostatic pressure. Biochemistry. 1986 Jun 17;25(12):3626–3631. doi: 10.1021/bi00360a022. [DOI] [PubMed] [Google Scholar]
- Wendt H., Leder L., Härmä H., Jelesarov I., Baici A., Bosshard H. R. Very rapid, ionic strength-dependent association and folding of a heterodimeric leucine zipper. Biochemistry. 1997 Jan 7;36(1):204–213. doi: 10.1021/bi961672y. [DOI] [PubMed] [Google Scholar]
- Wildegger G., Kiefhaber T. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J Mol Biol. 1997 Jul 11;270(2):294–304. doi: 10.1006/jmbi.1997.1030. [DOI] [PubMed] [Google Scholar]
- Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
- Wolynes P. G., Onuchic J. N., Thirumalai D. Navigating the folding routes. Science. 1995 Mar 17;267(5204):1619–1620. doi: 10.1126/science.7886447. [DOI] [PubMed] [Google Scholar]
- Zwanzig R. Simple model of protein folding kinetics. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9801–9804. doi: 10.1073/pnas.92.21.9801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwanzig R. Two-state models of protein folding kinetics. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):148–150. doi: 10.1073/pnas.94.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]