Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):557–567. doi: 10.1016/S0006-3495(98)77545-9

Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion.

N Periasamy 1, A S Verkman 1
PMCID: PMC1299730  PMID: 9649418

Abstract

Fluorescence recovery after photobleaching (FRAP) is widely used to measure fluorophore diffusion in artificial solutions and cellular compartments. Two new strategies to analyze FRAP data were investigated theoretically and applied to complex systems with anomalous diffusion or multiple diffusing species: 1) continuous distributions of diffusion coefficients, alpha(D), and 2) time-dependent diffusion coefficients, D(t). A regression procedure utilizing the maximum entropy method was developed to resolve alpha(D) from fluorescence recovery curves, F(t). The recovery of multi-component alpha(D) from simulated F(t) with random noise was demonstrated and limitations of the method were defined. Single narrow Gaussian alpha(D) were recovered for FRAP measurements of thin films of fluorescein and size-fractionated FITC-dextrans and Ficolls, and multi-component alpha(D) were recovered for defined fluorophore mixtures. Single Gaussian alpha(D) were also recovered for solute diffusion in viscous media containing high dextran concentrations. To identify anomalous diffusion from FRAP data, a theory was developed to compute F(t) and alpha(D) for anomalous diffusion models defined by arbitrary nonlinear mean-squared displacement <x2> versus time relations. Several characteristic alpha(D) profiles for anomalous diffusion were found, including broad alpha(D) for subdiffusion, and alpha(D) with negative amplitudes for superdiffusion. A method to deduce apparent D(t) from F(t) was also developed and shown to provide useful complementary information to alpha(D). alpha(D) and D(t) were determined from photobleaching measurements of systems with apparent anomalous subdiffusion (nonuniform solution layer) and superdiffusion (moving fluid layer). The results establish a practical strategy to characterize complex diffusive phenomena from photobleaching recovery measurements.

Full Text

The Full Text of this article is available as a PDF (161.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aon M. A., Cortassa S. On the fractal nature of cytoplasm. FEBS Lett. 1994 May 9;344(1):1–4. doi: 10.1016/0014-5793(94)00321-1. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barisas B. G., Leuther M. D. Fluorescence photobleaching recovery measurement of protein absolute diffusion constants. Biophys Chem. 1979 Sep;10(2):221–229. doi: 10.1016/0301-4622(79)85044-9. [DOI] [PubMed] [Google Scholar]
  4. Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
  5. Coelho F. P., Vaz W. L., Melo E. Phase topology and percolation in two-component lipid bilayers: a monte Carlo approach. Biophys J. 1997 Apr;72(4):1501–1511. doi: 10.1016/S0006-3495(97)78798-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farinas J., Verkman A. S. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophys J. 1996 Dec;71(6):3511–3522. doi: 10.1016/S0006-3495(96)79546-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gordon G. W., Chazotte B., Wang X. F., Herman B. Analysis of simulated and experimental fluorescence recovery after photobleaching. Data for two diffusing components. Biophys J. 1995 Mar;68(3):766–778. doi: 10.1016/S0006-3495(95)80251-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kao H. P., Abney J. R., Verkman A. S. Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol. 1993 Jan;120(1):175–184. doi: 10.1083/jcb.120.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kao H. P., Verkman A. S. Construction and performance of a photobleaching recovery apparatus with microsecond time resolution. Biophys Chem. 1996 Mar 7;59(1-2):203–210. doi: 10.1016/0301-4622(95)00139-5. [DOI] [PubMed] [Google Scholar]
  10. Kao H. P., Verkman A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J. 1994 Sep;67(3):1291–1300. doi: 10.1016/S0006-3495(94)80601-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Köpf M., Corinth C., Haferkamp O., Nonnenmacher T. F. Anomalous diffusion of water in biological tissues. Biophys J. 1996 Jun;70(6):2950–2958. doi: 10.1016/S0006-3495(96)79865-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lavalette D., Tetreau C., Brochon J. C., Livesey A. Conformational fluctuations and protein reactivity. Determination of the rate-constant spectrum and consequences in elementary biochemical processes. Eur J Biochem. 1991 Mar 28;196(3):591–598. doi: 10.1111/j.1432-1033.1991.tb15854.x. [DOI] [PubMed] [Google Scholar]
  13. Nagle J. F. Long tail kinetics in biophysics? Biophys J. 1992 Aug;63(2):366–370. doi: 10.1016/S0006-3495(92)81602-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olveczky B. P., Verkman A. S. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J. 1998 May;74(5):2722–2730. doi: 10.1016/S0006-3495(98)77978-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ott A, Bouchaud JP, Langevin D, Urbach W. Anomalous diffusion in "living polymers": A genuine Levy flight? Phys Rev Lett. 1990 Oct 22;65(17):2201–2204. doi: 10.1103/PhysRevLett.65.2201. [DOI] [PubMed] [Google Scholar]
  16. Partikian A., Olveczky B., Swaminathan R., Li Y., Verkman A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol. 1998 Feb 23;140(4):821–829. doi: 10.1083/jcb.140.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saxton M. J. Anomalous diffusion due to binding: a Monte Carlo study. Biophys J. 1996 Mar;70(3):1250–1262. doi: 10.1016/S0006-3495(96)79682-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saxton M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J. 1994 Feb;66(2 Pt 1):394–401. doi: 10.1016/s0006-3495(94)80789-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saxton M. J. Lateral diffusion in a mixture of mobile and immobile particles. A Monte Carlo study. Biophys J. 1990 Nov;58(5):1303–1306. doi: 10.1016/S0006-3495(90)82470-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saxton M. J. Lateral diffusion in an archipelago. Dependence on tracer size. Biophys J. 1993 Apr;64(4):1053–1062. doi: 10.1016/S0006-3495(93)81471-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saxton M. J. Single-particle tracking: models of directed transport. Biophys J. 1994 Nov;67(5):2110–2119. doi: 10.1016/S0006-3495(94)80694-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seksek O., Biwersi J., Verkman A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. doi: 10.1083/jcb.138.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solomon TH, Weeks ER, Swinney HL. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys Rev Lett. 1993 Dec 13;71(24):3975–3978. doi: 10.1103/PhysRevLett.71.3975. [DOI] [PubMed] [Google Scholar]
  26. Soumpasis D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983 Jan;41(1):95–97. doi: 10.1016/S0006-3495(83)84410-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swaminathan R., Krishnamoorthy G., Periasamy N. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. Biophys J. 1994 Nov;67(5):2013–2023. doi: 10.1016/S0006-3495(94)80685-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Zoelen E. J., Tertoolen L. G., de Laat S. W. Simple computer method for evaluation of lateral diffusion coefficients from fluorescence photobleaching recovery kinetics. Biophys J. 1983 Apr;42(1):103–108. doi: 10.1016/S0006-3495(83)84374-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES