Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):999–1009. doi: 10.1016/S0006-3495(98)77588-5

The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II.

I Chizhov 1, G Schmies 1, R Seidel 1, J R Sydor 1, B Lüttenberg 1, M Engelhard 1
PMCID: PMC1299773  PMID: 9675200

Abstract

The photocycle of the photophobic receptor sensory rhodopsin II from N. pharaonis was analyzed by varying measuring wavelengths, temperature, and pH, and by exchanging H2O with D2O. The data can be satisfactorily modeled by eight exponents over the whole range of modified parameters. The kinetic data support a model similar to that of bacteriorhodopsin (BR) if a scheme of irreversible first-order reactions is assumed. Eight kinetically distinct protein states can then be identified. These states are formed from five spectrally distinct species. The chromophore states Si correspond in their spectral properties to those of the BR photocycle, namely pSRII510 (K), pSRII495 (L), pSRII400 (M), pSRII485 (N), and pSRII535 (O). In comparison to BR, pSRII400 is formed approximately 10 times faster than the M state; however, the back-reaction is almost 100 times slower. Comparison of the temperature dependence of the rate constants with those from the BR photocycle suggests that the differences are caused by changes of DeltaS. The rate constants of the pSRII photocycle are almost insensitive to the pH variation from 9.0 to 5.5, and show only a small H2O/D2O effect. This analysis supports the idea that the conformational dynamics of pSRII controls the kinetics of the photocycle of pSRII.

Full Text

The Full Text of this article is available as a PDF (208.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birge R. R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta. 1990 Apr 26;1016(3):293–327. doi: 10.1016/0005-2728(90)90163-x. [DOI] [PubMed] [Google Scholar]
  2. Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J. 1996 Nov;71(5):2329–2345. doi: 10.1016/S0006-3495(96)79475-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cline S. W., Schalkwyk L. C., Doolittle W. F. Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol. 1989 Sep;171(9):4987–4991. doi: 10.1128/jb.171.9.4987-4991.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickopf S., Heyn M. P. Evidence for the first phase of the reprotonation switch of bacteriorhodopsin from time-resolved photovoltage and flash photolysis experiments on the photoreversal of the M-intermediate. Biophys J. 1997 Dec;73(6):3171–3181. doi: 10.1016/S0006-3495(97)78343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dér A., Száraz S., Tóth-Boconádi R., Tokaji Z., Keszthelyi L., Stoeckenius W. Alternative translocation of protons and halide ions by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4751–4755. doi: 10.1073/pnas.88.11.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
  7. Engelhard M., Scharf B., Siebert F. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett. 1996 Oct 21;395(2-3):195–198. doi: 10.1016/0014-5793(96)01041-1. [DOI] [PubMed] [Google Scholar]
  8. Ferrando-May E., Brustmann B., Oesterhelt D. A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Mol Microbiol. 1993 Sep;9(5):943–953. doi: 10.1111/j.1365-2958.1993.tb01224.x. [DOI] [PubMed] [Google Scholar]
  9. Ferrando-May E., Krah M., Marwan W., Oesterhelt D. The methyl-accepting transducer protein HtrI is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. EMBO J. 1993 Aug;12(8):2999–3005. doi: 10.1002/j.1460-2075.1993.tb05968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fischer U., Oesterhelt D. Chromophore equilibria in bacteriorhodopsin. Biophys J. 1979 Nov;28(2):211–230. doi: 10.1016/S0006-3495(79)85172-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  12. Haupts U., Haupts C., Oesterhelt D. The photoreceptor sensory rhodopsin I as a two-photon-driven proton pump. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3834–3838. doi: 10.1073/pnas.92.9.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirayama J., Imamoto Y., Shichida Y., Kamo N., Tomioka H., Yoshizawa T. Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry. Biochemistry. 1992 Feb 25;31(7):2093–2098. doi: 10.1021/bi00122a029. [DOI] [PubMed] [Google Scholar]
  14. Hirayma J., Kamo N., Imamoto Y., Shichida Y., Yoshizawa T. Reason for the lack of light-dark adaptation in pharaonis phoborhodopsin: reconstitution with 13-cis-retinal. FEBS Lett. 1995 May 8;364(2):168–170. doi: 10.1016/0014-5793(95)00381-i. [DOI] [PubMed] [Google Scholar]
  15. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  16. Holmes M. L., Dyall-Smith M. L. A plasmid vector with a selectable marker for halophilic archaebacteria. J Bacteriol. 1990 Feb;172(2):756–761. doi: 10.1128/jb.172.2.756-761.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Imamoto Y., Shichida Y., Hirayama J., Tomioka H., Kamo N., Yoshizawa T. Chromophore configuration of pharaonis phoborhodopsin and its isomerization on photon absorption. Biochemistry. 1992 Mar 10;31(9):2523–2528. doi: 10.1021/bi00124a012. [DOI] [PubMed] [Google Scholar]
  18. Imamoto Y., Shichida Y., Yoshizawa T., Tomioka H., Takahashi T., Fujikawa K., Kamo N., Kobatake Y. Photoreaction cycle of phoborhodopsin studied by low-temperature spectrophotometry. Biochemistry. 1991 Jul 30;30(30):7416–7424. doi: 10.1021/bi00244a008. [DOI] [PubMed] [Google Scholar]
  19. Kimura Y., Ikegami A., Stoeckenius W. Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem Photobiol. 1984 Nov;40(5):641–646. doi: 10.1111/j.1751-1097.1984.tb05353.x. [DOI] [PubMed] [Google Scholar]
  20. Krebs M. P., Spudich E. N., Spudich J. L. Rapid high-yield purification and liposome reconstitution of polyhistidine-tagged sensory rhodopsin I. Protein Expr Purif. 1995 Dec;6(6):780–788. doi: 10.1006/prep.1995.0009. [DOI] [PubMed] [Google Scholar]
  21. Metzler D. E., Harris C. M. Shapes of spectral bands of visual pigments. Vision Res. 1978;18(10):1417–1420. doi: 10.1016/0042-6989(78)90235-3. [DOI] [PubMed] [Google Scholar]
  22. Olson K. D., Deval P., Spudich J. L. Absorption and photochemistry of sensory rhodopsin--I: pH effects. Photochem Photobiol. 1992 Dec;56(6):1181–1187. doi: 10.1111/j.1751-1097.1992.tb09743.x. [DOI] [PubMed] [Google Scholar]
  23. Scharf B., Engelhard M. Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry. 1994 May 31;33(21):6387–6393. doi: 10.1021/bi00187a002. [DOI] [PubMed] [Google Scholar]
  24. Scharf B., Hess B., Engelhard M. Chromophore of sensory rhodopsin II from Halobacterium halobium. Biochemistry. 1992 Dec 15;31(49):12486–12492. doi: 10.1021/bi00164a027. [DOI] [PubMed] [Google Scholar]
  25. Scharf B., Pevec B., Hess B., Engelhard M. Biochemical and photochemical properties of the photophobic receptors from Halobacterium halobium and Natronobacterium pharaonis. Eur J Biochem. 1992 Jun 1;206(2):359–366. doi: 10.1111/j.1432-1033.1992.tb16935.x. [DOI] [PubMed] [Google Scholar]
  26. Seidel R., Scharf B., Gautel M., Kleine K., Oesterhelt D., Engelhard M. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3036–3040. doi: 10.1073/pnas.92.7.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spudich E. N., Spudich J. L. The photochemical reactions of sensory rhodopsin I are altered by its transducer. J Biol Chem. 1993 Aug 5;268(22):16095–16097. [PubMed] [Google Scholar]
  28. Spudich E. N., Zhang W., Alam M., Spudich J. L. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4960–4965. doi: 10.1073/pnas.94.10.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi T., Yan B., Mazur P., Derguini F., Nakanishi K., Spudich J. L. Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). Biochemistry. 1990 Sep 11;29(36):8467–8474. doi: 10.1021/bi00488a038. [DOI] [PubMed] [Google Scholar]
  30. Tomioka H., Sasabe H. Isolation of photochemically active archaebacterial photoreceptor, pharaonis phoborhodopsin from Natronobacterium pharaonis. Biochim Biophys Acta. 1995 Mar 22;1234(2):261–267. doi: 10.1016/0005-2736(94)00292-w. [DOI] [PubMed] [Google Scholar]
  31. Yan B., Takahashi T., Johnson R., Spudich J. L. Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry. 1991 Nov 5;30(44):10686–10692. doi: 10.1021/bi00108a012. [DOI] [PubMed] [Google Scholar]
  32. Yao V. J., Spudich J. L. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11915–11919. doi: 10.1073/pnas.89.24.11915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang W., Brooun A., Mueller M. M., Alam M. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8230–8235. doi: 10.1073/pnas.93.16.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhu J., Spudich E. N., Alam M., Spudich J. L. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Photochem Photobiol. 1997 Dec;66(6):788–791. doi: 10.1111/j.1751-1097.1997.tb03225.x. [DOI] [PubMed] [Google Scholar]
  35. le Coutre J., Gerwert K. Kinetic isotope effects reveal an ice-like and a liquid-phase-type intramolecular proton transfer in bacteriorhodopsin. FEBS Lett. 1996 Dec 2;398(2-3):333–336. doi: 10.1016/s0014-5793(96)01254-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES