Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Sep;75(3):1529–1540. doi: 10.1016/S0006-3495(98)74072-X

Simulating the role of microtubules in depolymerization-driven transport: a Monte Carlo approach.

Y C Tao 1, C S Peskin 1
PMCID: PMC1299828  PMID: 9726955

Abstract

In this paper we present a model that simulates the role of microtubules in depolymerization-driven transport. The model simulates a system that consists of a 13-protofilament microtubule with "five-start" helical structure and a motor protein-coated bead that moves along one of the protofilaments of the microtubule, as in in vitro experiments. The microtubule is simulated using the lateral cap model, with substantial generalizations. For the new terminal configurations in the presence of the bead, rate constants for association and dissociation events of tubulin molecules are calculated by exploring the geometric similarities between different patterns of terminal configurations and by decomposing complex patterns into simpler patterns whose corresponding rate constants are known. In comparison with a previous model, in which simplifications are made about the structure of the microtubule and in which the microtubule can only depolymerize, the detailed structure of the microtubule is taken into account in the present model. Furthermore, the microtubule can be either polymerizing or depolymerizing. Force-velocity curves are obtained for both zero and non-zero tubulin guanosine 5'-triphosphate (GTP) concentrations. By analyzing the trajectory of the bead under different parameters, the condition for "run and pause" is analyzed, and the time scale of "run" and "pause" is found to be different for different motor proteins. We also suggest experiments that can be used to examine the results predicted by the model.

Full Text

The Full Text of this article is available as a PDF (223.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayley P. M., Schilstra M. J., Martin S. R. Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model. J Cell Sci. 1990 Jan;95(Pt 1):33–48. doi: 10.1242/jcs.95.1.33. [DOI] [PubMed] [Google Scholar]
  2. Coppin C. M., Pierce D. W., Hsu L., Vale R. D. The load dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539–8544. doi: 10.1073/pnas.94.16.8539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coue M., Lombillo V. A., McIntosh J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J Cell Biol. 1991 Mar;112(6):1165–1175. doi: 10.1083/jcb.112.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Desai A., Mitchison T. J. A new role for motor proteins as couplers to depolymerizing microtubules. J Cell Biol. 1995 Jan;128(1-2):1–4. doi: 10.1083/jcb.128.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dogterom M, Leibler S. Physical aspects of the growth and regulation of microtubule structures. Phys Rev Lett. 1993 Mar 1;70(9):1347–1350. doi: 10.1103/PhysRevLett.70.1347. [DOI] [PubMed] [Google Scholar]
  6. Hill T. L., Chen Y. Phase changes at the end of a microtubule with a GTP cap. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5772–5776. doi: 10.1073/pnas.81.18.5772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill T. L. Introductory analysis of the GTP-cap phase-change kinetics at the end of a microtubule. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6728–6732. doi: 10.1073/pnas.81.21.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard J. The mechanics of force generation by kinesin. Biophys J. 1995 Apr;68(4 Suppl):245S–255S. [PMC free article] [PubMed] [Google Scholar]
  9. Inoué S. Cell division and the mitotic spindle. J Cell Biol. 1981 Dec;91(3 Pt 2):131s–147s. doi: 10.1083/jcb.91.3.131s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koshland D. E., Mitchison T. J., Kirschner M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature. 1988 Feb 11;331(6156):499–504. doi: 10.1038/331499a0. [DOI] [PubMed] [Google Scholar]
  11. Lombillo V. A., Stewart R. J., McIntosh J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature. 1995 Jan 12;373(6510):161–164. doi: 10.1038/373161a0. [DOI] [PubMed] [Google Scholar]
  12. Mandelkow E. M., Mandelkow E., Milligan R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol. 1991 Sep;114(5):977–991. doi: 10.1083/jcb.114.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin S. R., Schilstra M. J., Bayley P. M. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Biophys J. 1993 Aug;65(2):578–596. doi: 10.1016/S0006-3495(93)81091-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  15. Odde D. J., Cassimeris L., Buettner H. M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys J. 1995 Sep;69(3):796–802. doi: 10.1016/S0006-3495(95)79953-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peskin C. S., Oster G. F. Force production by depolymerizing microtubules: load-velocity curves and run-pause statistics. Biophys J. 1995 Dec;69(6):2268–2276. doi: 10.1016/S0006-3495(95)80097-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rieder C. L., Alexander S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 1990 Jan;110(1):81–95. doi: 10.1083/jcb.110.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Semënov M. V. New concept of microtubule dynamics and microtubule motor movement and new model of chromosome movement in mitosis. J Theor Biol. 1996 Mar 21;179(2):91–117. doi: 10.1006/jtbi.1996.0052. [DOI] [PubMed] [Google Scholar]
  19. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  20. Wade R. H., Hyman A. A. Microtubule structure and dynamics. Curr Opin Cell Biol. 1997 Feb;9(1):12–17. doi: 10.1016/s0955-0674(97)80146-9. [DOI] [PubMed] [Google Scholar]
  21. Walker R. A., O'Brien E. T., Pryer N. K., Soboeiro M. F., Voter W. A., Erickson H. P., Salmon E. D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–1448. doi: 10.1083/jcb.107.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES