Abstract
Three variations of a polymer chain model for the human erythrocyte cytoskeleton are used in large deformation simulations of microscopic membrane patches. Each model satisfies an experimental observation that the contour length of the spectrin tetramers making up the erythrocyte cytoskeleton is roughly square root of 7 times the end-to-end distance of the tetramer in vivo. Up to modest stress, each brushy cytoskeletal network behaves, consistently, like a low-temperature, planar network of Hookean springs, with a model-dependent effective spring constant, keff, in the range of 20-40 kBT/s(o)2, where T is the temperature and s(o) is the force-free spring length. However, several features observed at large deformation distinguish these models from spring networks: 1) Network dimensions do not expand without bound in approaching a critical isotropic tension (square root of 3 keff) that is a characteristic limit of Hookean spring nets. 2) In surface compression, steric interactions among the chain elements prevent a network collapse that is otherwise observed in compression of planar triangulated networks of springs. 3) Under uniaxial surface tension, isotropy of the network disappears only as the network is stretched by more than 50% of its equilibrium dimensions. Also found are definitively non-Hookean regimes in the stress dependence of the elastic moduli. Lastly, determinations of elastic moduli from both fluctuations and stress/strain relations prove to be consistent, implying that consistency should be expected among experimental determinations of these quantities.
Full Text
The Full Text of this article is available as a PDF (160.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronovitz JA, Lubensky TC. Fluctuations of solid membranes. Phys Rev Lett. 1988 Jun 20;60(25):2634–2637. doi: 10.1103/PhysRevLett.60.2634. [DOI] [PubMed] [Google Scholar]
- Boal D. H., Boey S. K. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane. Biophys J. 1995 Aug;69(2):372–379. doi: 10.1016/S0006-3495(95)79909-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boal D. H. Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J. 1994 Aug;67(2):521–529. doi: 10.1016/S0006-3495(94)80511-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boal DH, Seifert U, Shillcock JC. Negative Poisson ratio in two-dimensional networks under tension. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Dec;48(6):4274–4283. doi: 10.1103/physreve.48.4274. [DOI] [PubMed] [Google Scholar]
- Burt R. W., Bishop D. T., Cannon-Albright L., Samowitz W. S., Lee R. L., DiSario J. A., Skolnick M. H. Hereditary aspects of colorectal adenomas. Cancer. 1992 Sep 1;70(5 Suppl):1296–1299. doi: 10.1002/1097-0142(19920901)70:3+<1296::aid-cncr2820701516>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Byers T. J., Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher D. E., Boal D. H., Boey S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J. 1998 Sep;75(3):1584–1597. doi: 10.1016/S0006-3495(98)74076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher D. E., Mohandas N., Evans E. A. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science. 1994 Nov 11;266(5187):1032–1035. doi: 10.1126/science.7973655. [DOI] [PubMed] [Google Scholar]
- Hansen J. C., Skalak R., Chien S., Hoger A. An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys J. 1996 Jan;70(1):146–166. doi: 10.1016/S0006-3495(96)79556-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. C., Skalak R., Chien S., Hoger A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J. 1997 May;72(5):2369–2381. doi: 10.1016/S0006-3495(97)78882-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Doussal P, Radzihovsky L. Self-consistent theory of polymerized membranes. Phys Rev Lett. 1992 Aug 24;69(8):1209–1212. doi: 10.1103/PhysRevLett.69.1209. [DOI] [PubMed] [Google Scholar]
- Liu S. C., Derick L. H., Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987 Mar;104(3):527–536. doi: 10.1083/jcb.104.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
- Mohandas N., Groner W. Cell membrane and volume changes during red cell development and aging. Ann N Y Acad Sci. 1989;554:217–224. doi: 10.1111/j.1749-6632.1989.tb22423.x. [DOI] [PubMed] [Google Scholar]
- Saxton M. J. The membrane skeleton of erythrocytes. A percolation model. Biophys J. 1990 Jun;57(6):1167–1177. doi: 10.1016/S0006-3495(90)82636-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties. Eur Biophys J. 1986;13(4):203–218. doi: 10.1007/BF00260368. [DOI] [PubMed] [Google Scholar]
- Strey H., Peterson M., Sackmann E. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J. 1995 Aug;69(2):478–488. doi: 10.1016/S0006-3495(95)79921-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svoboda K., Schmidt C. F., Branton D., Block S. M. Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J. 1992 Sep;63(3):784–793. doi: 10.1016/S0006-3495(92)81644-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang W, Thorpe MF. Percolation of elastic networks under tension. Phys Rev B Condens Matter. 1988 Apr 1;37(10):5539–5551. doi: 10.1103/physrevb.37.5539. [DOI] [PubMed] [Google Scholar]
- Tolomeo J. A., Steele C. R., Holley M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421–429. doi: 10.1016/S0006-3495(96)79244-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ursitti J. A., Wade J. B. Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton. Cell Motil Cytoskeleton. 1993;25(1):30–42. doi: 10.1002/cm.970250105. [DOI] [PubMed] [Google Scholar]
- Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilker A, Ziegler M, Sackmann E. Spectral analysis of erythrocyte flickering in the 0.3-4- microm-1 regime by microinterferometry combined with fast image processing. Phys Rev A. 1992 Dec 15;46(12):7998–8001. doi: 10.1103/physreva.46.7998. [DOI] [PubMed] [Google Scholar]