Abstract
Free energy calculations were carried out to understand the effect of the I56V mutation of human lysozyme on its thermal stability. In the simulation of the denatured state, a short peptide including the mutation site in the middle is employed. To study the dependence of the stability on the denatured-state structure, five different initial conformations, native-like, extended, and three random-coil-like conformations, were examined. We found that the calculated free energy difference, DeltaDeltaGcal, depends significantly on the structure of the denatured state. When native-like structure is employed, DeltaDeltaGcal is in good agreement with the experimental free energy difference, DeltaDeltaGexp, whereas in the other four models, DeltaDeltaGcal differs sharply from DeltaDeltaGexp. It is therefore strongly suggested that the structure around the mutation site takes a native-like conformation rather than an extended or random-coil conformation. From the free energy component analysis, it has been shown that free energy components originating from Lennard-Jones and covalent interactions dominantly determine DeltaDeltaGcal. The contribution of protein-protein interactions to the nonbonded component of DeltaDeltaGcal is about the same as that from protein-water interactions. The residues that are located in a hydrophobic core (F3, L8, Y38, N39, T40, and I89) contribute significantly to the nonbonded free energy component of DeltaDeltaGcal. We also propose a general computational strategy for the study of protein stability that is equally conscious of the denatured and native states.
Full Text
The Full Text of this article is available as a PDF (146.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beveridge D. L., DiCapua F. M. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 1989;18:431–492. doi: 10.1146/annurev.bb.18.060189.002243. [DOI] [PubMed] [Google Scholar]
- Boresch S., Archontis G., Karplus M. Free energy simulations: the meaning of the individual contributions from a component analysis. Proteins. 1994 Sep;20(1):25–33. doi: 10.1002/prot.340200105. [DOI] [PubMed] [Google Scholar]
- Boresch S., Karplus M. The meaning of component analysis: decomposition of the free energy in terms of specific interactions. J Mol Biol. 1995 Dec 15;254(5):801–807. doi: 10.1006/jmbi.1995.0656. [DOI] [PubMed] [Google Scholar]
- Brady G. P., Sharp K. A. Decomposition of interaction free energies in proteins and other complex systems. J Mol Biol. 1995 Nov 17;254(1):77–85. doi: 10.1006/jmbi.1995.0600. [DOI] [PubMed] [Google Scholar]
- Brady G. P., Szabo A., Sharp K. A. On the decomposition of free energies. J Mol Biol. 1996 Oct 25;263(2):123–125. doi: 10.1006/jmbi.1996.0563. [DOI] [PubMed] [Google Scholar]
- Buck M., Radford S. E., Dobson C. M. Amide hydrogen exchange in a highly denatured state. Hen egg-white lysozyme in urea. J Mol Biol. 1994 Apr 1;237(3):247–254. doi: 10.1006/jmbi.1994.1228. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Topping K. D., Woolfson D. N., Dobson C. M. Hydrophobic clustering in nonnative states of a protein: interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins. 1991;9(4):248–266. doi: 10.1002/prot.340090404. [DOI] [PubMed] [Google Scholar]
- Flanagan J. M., Kataoka M., Fujisawa T., Engelman D. M. Mutations can cause large changes in the conformation of a denatured protein. Biochemistry. 1993 Oct 5;32(39):10359–10370. doi: 10.1021/bi00090a011. [DOI] [PubMed] [Google Scholar]
- Funahashi J., Takano K., Ogasahara K., Yamagata Y., Yutani K. The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J Biochem. 1996 Dec;120(6):1216–1223. doi: 10.1093/oxfordjournals.jbchem.a021544. [DOI] [PubMed] [Google Scholar]
- Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985 Mar;31(3):1695–1697. doi: 10.1103/physreva.31.1695. [DOI] [PubMed] [Google Scholar]
- Kellis J. T., Jr, Nyberg K., Fersht A. R. Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry. 1989 May 30;28(11):4914–4922. doi: 10.1021/bi00437a058. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Otzen D. E., Fersht A. R. Side-chain determinants of beta-sheet stability. Biochemistry. 1995 May 2;34(17):5718–5724. doi: 10.1021/bi00017a003. [DOI] [PubMed] [Google Scholar]
- Otzen D. E., Rheinnecker M., Fersht A. R. Structural factors contributing to the hydrophobic effect: the partly exposed hydrophobic minicore in chymotrypsin inhibitor 2. Biochemistry. 1995 Oct 10;34(40):13051–13058. doi: 10.1021/bi00040a016. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Contribution of the hydrophobic effect to globular protein stability. J Mol Biol. 1992 Jul 5;226(1):29–35. doi: 10.1016/0022-2836(92)90121-y. [DOI] [PubMed] [Google Scholar]
- Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
- Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
- Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
- Shi Y. Y., Mark A. E., Wang C. X., Huang F., Berendsen H. J., van Gunsteren W. F. Can the stability of protein mutants be predicted by free energy calculations? Protein Eng. 1993 Apr;6(3):289–295. doi: 10.1093/protein/6.3.289. [DOI] [PubMed] [Google Scholar]
- Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
- Shortle D. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 1996 Jan;10(1):27–34. doi: 10.1096/fasebj.10.1.8566543. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Fiebig K. M., Schwalbe H., Dobson C. M. The concept of a random coil. Residual structure in peptides and denatured proteins. Fold Des. 1996;1(5):R95–106. doi: 10.1016/S1359-0278(96)00046-6. [DOI] [PubMed] [Google Scholar]
- Sugita Y., Kitao A., Go N. Computational analysis of thermal stability: effect of Ile-->Val mutations in human lysozyme. Fold Des. 1998;3(3):173–181. doi: 10.1016/S1359-0278(98)00025-X. [DOI] [PubMed] [Google Scholar]
- Sugita Y., Kitao A. Improved protein free energy calculation by more accurate treatment of nonbonded energy: application to chymotrypsin inhibitor 2, V57A. Proteins. 1998 Mar 1;30(4):388–400. [PubMed] [Google Scholar]
- Sun Y. C., Veenstra D. L., Kollman P. A. Free energy calculations of the mutation of Ile96-->Ala in barnase: contributions to the difference in stability. Protein Eng. 1996 Mar;9(3):273–281. doi: 10.1093/protein/9.3.273. [DOI] [PubMed] [Google Scholar]
- Takano K., Ogasahara K., Kaneda H., Yamagata Y., Fujii S., Kanaya E., Kikuchi M., Oobatake M., Yutani K. Contribution of hydrophobic residues to the stability of human lysozyme: calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants. J Mol Biol. 1995 Nov 17;254(1):62–76. doi: 10.1006/jmbi.1995.0599. [DOI] [PubMed] [Google Scholar]
- Takano K., Yamagata Y., Fujii S., Yutani K. Contribution of the hydrophobic effect to the stability of human lysozyme: calorimetric studies and X-ray structural analyses of the nine valine to alanine mutants. Biochemistry. 1997 Jan 28;36(4):688–698. doi: 10.1021/bi9621829. [DOI] [PubMed] [Google Scholar]
- Tidor B., Karplus M. Simulation analysis of the stability mutant R96H of T4 lysozyme. Biochemistry. 1991 Apr 2;30(13):3217–3228. doi: 10.1021/bi00227a009. [DOI] [PubMed] [Google Scholar]
- van Gunsteren W. F., Mark A. E. On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem. 1992 Mar 15;204(3):947–961. doi: 10.1111/j.1432-1033.1992.tb16716.x. [DOI] [PubMed] [Google Scholar]