Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2435–2440. doi: 10.1016/S0006-3495(98)77687-8

The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates.

J Sasaki 1, J L Spudich 1
PMCID: PMC1299917  PMID: 9788938

Abstract

We studied the photochemical reaction cycle of sensory rhodopsin II (SRII) by flash photolysis of Halobacterium salinarum membranes genetically engineered to contain or to lack its transducer protein HtrII. Flash photolysis data from membranes containing HtrII were fit well in the 10 micros-10 s range by three rate constants and a linear unbranched pathway from the unphotolyzed state with 487 nm absorption maximum to a species with absorption maximum near 350 nm (M) followed by a species with maximum near 520 nm (O), as has been found in previous studies of wild-type membranes. Data from membranes devoid of HtrII exhibited similar M and O intermediates but with altered kinetics, and a third intermediate absorbing maximally near 470 nm (N) was present in an equilibrium mixture with O. The modulation of SRII photoreactions by HtrII indicates that SRII and HtrII are physically associated in a molecular complex. Arrhenius analysis shows that the largest effect of HtrII, the acceleration of O decay, is attributable to a large decrease in activation enthalpy. Based on comparison of SRII photoreactions to those of sensory rhodopsin I and bacteriorhodopsin, we interpret this kinetic effect to indicate that HtrII interacts with SRII so that it alters the reaction process involving deprotonation of Asp73, the proton acceptor from the Schiff base.

Full Text

The Full Text of this article is available as a PDF (85.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balashov S. P., Imasheva E. S., Ebrey T. G., Chen N., Menick D. R., Crouch R. K. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry. 1997 Jul 22;36(29):8671–8676. doi: 10.1021/bi970744y. [DOI] [PubMed] [Google Scholar]
  2. Bogomolni R. A., Spudich J. L. The photochemical reactions of bacterial sensory rhodopsin-I. Flash photolysis study in the one microsecond to eight second time window. Biophys J. 1987 Dec;52(6):1071–1075. doi: 10.1016/S0006-3495(87)83301-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogomolni R. A., Stoeckenius W., Szundi I., Perozo E., Olson K. D., Spudich J. L. Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10188–10192. doi: 10.1073/pnas.91.21.10188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bousché O., Sonar S., Krebs M. P., Khorana H. G., Rothschild K. J. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Photochem Photobiol. 1992 Dec;56(6):1085–1095. doi: 10.1111/j.1751-1097.1992.tb09732.x. [DOI] [PubMed] [Google Scholar]
  5. Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem. 1995 Nov 10;270(45):27122–27126. doi: 10.1074/jbc.270.45.27122. [DOI] [PubMed] [Google Scholar]
  6. Dioumaev A. K., Richter H. T., Brown L. S., Tanio M., Tuzi S., Saito H., Kimura Y., Needleman R., Lanyi J. K. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry. 1998 Feb 24;37(8):2496–2506. doi: 10.1021/bi971842m. [DOI] [PubMed] [Google Scholar]
  7. Engelhard M., Scharf B., Siebert F. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett. 1996 Oct 21;395(2-3):195–198. doi: 10.1016/0014-5793(96)01041-1. [DOI] [PubMed] [Google Scholar]
  8. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol. 1997;13:457–512. doi: 10.1146/annurev.cellbio.13.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  10. Hug S. J., Lewis J. W., Einterz C. M., Thorgeirsson T. E., Kliger D. S. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate. Biochemistry. 1990 Feb 13;29(6):1475–1485. doi: 10.1021/bi00458a019. [DOI] [PubMed] [Google Scholar]
  11. Kamikubo H., Kataoka M., Váró G., Oka T., Tokunaga F., Needleman R., Lanyi J. K. Structure of the N intermediate of bacteriorhodopsin revealed by x-ray diffraction. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1386–1390. doi: 10.1073/pnas.93.4.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kandori H., Yamazaki Y., Hatanaka M., Needleman R., Brown L. S., Richter H. T., Lanyi J. K., Maeda A. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin. Biochemistry. 1997 Apr 29;36(17):5134–5141. doi: 10.1021/bi9629788. [DOI] [PubMed] [Google Scholar]
  13. Krah M., Marwan W., Verméglio A., Oesterhelt D. Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer HtrI. EMBO J. 1994 May 1;13(9):2150–2155. doi: 10.1002/j.1460-2075.1994.tb06491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lanyi J. K. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem. 1997 Dec 12;272(50):31209–31212. doi: 10.1074/jbc.272.50.31209. [DOI] [PubMed] [Google Scholar]
  15. Oesterhelt D., Tittor J., Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):181–191. doi: 10.1007/BF00762676. [DOI] [PubMed] [Google Scholar]
  16. Olson K. D., Spudich J. L. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle. Biophys J. 1993 Dec;65(6):2578–2585. doi: 10.1016/S0006-3495(93)81295-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rath P., Spudich E., Neal D. D., Spudich J. L., Rothschild K. J. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Biochemistry. 1996 May 28;35(21):6690–6696. doi: 10.1021/bi9600355. [DOI] [PubMed] [Google Scholar]
  18. Rothschild K. J. FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr. 1992 Apr;24(2):147–167. doi: 10.1007/BF00762674. [DOI] [PubMed] [Google Scholar]
  19. Rudolph J., Tolliday N., Schmitt C., Schuster S. C., Oesterhelt D. Phosphorylation in halobacterial signal transduction. EMBO J. 1995 Sep 1;14(17):4249–4257. doi: 10.1002/j.1460-2075.1995.tb00099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sasaki J., Lanyi J. K., Needleman R., Yoshizawa T., Maeda A. Complete identification of C = O stretching vibrational bands of protonated aspartic acid residues in the difference infrared spectra of M and N intermediates versus bacteriorhodopsin. Biochemistry. 1994 Mar 22;33(11):3178–3184. doi: 10.1021/bi00177a006. [DOI] [PubMed] [Google Scholar]
  21. Sasaki J., Yuzawa T., Kandori H., Maeda A., Hamaguchi H. Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle. Biophys J. 1995 May;68(5):2073–2080. doi: 10.1016/S0006-3495(95)80386-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spudich E. N., Spudich J. L. The photochemical reactions of sensory rhodopsin I are altered by its transducer. J Biol Chem. 1993 Aug 5;268(22):16095–16097. [PubMed] [Google Scholar]
  23. Spudich E. N., Sundberg S. A., Manor D., Spudich J. L. Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins. 1986 Nov;1(3):239–246. doi: 10.1002/prot.340010306. [DOI] [PubMed] [Google Scholar]
  24. Spudich E. N., Zhang W., Alam M., Spudich J. L. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4960–4965. doi: 10.1073/pnas.94.10.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spudich J. L. Protein-protein interaction converts a proton pump into a sensory receptor. Cell. 1994 Dec 2;79(5):747–750. doi: 10.1016/0092-8674(94)90064-7. [DOI] [PubMed] [Google Scholar]
  26. Subramaniam S., Gerstein M., Oesterhelt D., Henderson R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 1993 Jan;12(1):1–8. doi: 10.1002/j.1460-2075.1993.tb05625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takahashi T., Yan B., Mazur P., Derguini F., Nakanishi K., Spudich J. L. Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). Biochemistry. 1990 Sep 11;29(36):8467–8474. doi: 10.1021/bi00488a038. [DOI] [PubMed] [Google Scholar]
  28. Tomioka H., Takahashi T., Kamo N., Kobatake Y. Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem Biophys Res Commun. 1986 Sep 14;139(2):389–395. doi: 10.1016/s0006-291x(86)80003-1. [DOI] [PubMed] [Google Scholar]
  29. Yan B., Takahashi T., Johnson R., Spudich J. L. Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry. 1991 Nov 5;30(44):10686–10692. doi: 10.1021/bi00108a012. [DOI] [PubMed] [Google Scholar]
  30. Yao V. J., Spudich J. L. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11915–11919. doi: 10.1073/pnas.89.24.11915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang W., Brooun A., Mueller M. M., Alam M. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8230–8235. doi: 10.1073/pnas.93.16.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhang X. N., Spudich J. L. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. J Biol Chem. 1998 Jul 31;273(31):19722–19728. doi: 10.1074/jbc.273.31.19722. [DOI] [PubMed] [Google Scholar]
  33. Zhu J., Spudich E. N., Alam M., Spudich J. L. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Photochem Photobiol. 1997 Dec;66(6):788–791. doi: 10.1111/j.1751-1097.1997.tb03225.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES