Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Nov;75(5):2513–2519. doi: 10.1016/S0006-3495(98)77696-9

Symmetry laws for interaction between helical macromolecules.

A A Kornyshev 1, S Leikin 1
PMCID: PMC1299926  PMID: 9788947

Abstract

The power of symmetry laws is applied in many scientific areas from elementary particle physics to structural biology. The structures of many biological helices, including DNA, were resolved with the use of pertinent symmetry constraints. It was not recognized, however, that similar constraints determine cardinal features of helix-helix interactions vital for many recognition and assembly reactions in living cells. We now formulate such symmetry-determined interaction laws and apply them to explain DNA "over-winding" from 10.5 base pairs per turn in solution to 10 in hydrated fibers, counterion specificity in DNA condensation, and forces observed over the last 15 A of separation between DNA, collagen, and four-stranded guanosine helices.

Full Text

The Full Text of this article is available as a PDF (99.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bella J., Brodsky B., Berman H. M. Hydration structure of a collagen peptide. Structure. 1995 Sep 15;3(9):893–906. doi: 10.1016/S0969-2126(01)00224-6. [DOI] [PubMed] [Google Scholar]
  2. Bella J., Eaton M., Brodsky B., Berman H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994 Oct 7;266(5182):75–81. doi: 10.1126/science.7695699. [DOI] [PubMed] [Google Scholar]
  3. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  4. Crothers D. M., Drak J., Kahn J. D., Levene S. D. DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol. 1992;212:3–29. doi: 10.1016/0076-6879(92)12003-9. [DOI] [PubMed] [Google Scholar]
  5. Edwards K. J., Brown D. G., Spink N., Skelly J. V., Neidle S. Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2. An examination of propeller twist and minor-groove water structure at 2.2 A resolution. J Mol Biol. 1992 Aug 20;226(4):1161–1173. doi: 10.1016/0022-2836(92)91059-x. [DOI] [PubMed] [Google Scholar]
  6. Gosule L. C., Schellman J. A. DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol. 1978 May 25;121(3):311–326. doi: 10.1016/0022-2836(78)90366-2. [DOI] [PubMed] [Google Scholar]
  7. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  8. Jayaram B., Sharp K. A., Honig B. The electrostatic potential of B-DNA. Biopolymers. 1989 May;28(5):975–993. doi: 10.1002/bip.360280506. [DOI] [PubMed] [Google Scholar]
  9. Kornyshev AA, Leikin S. Fluctuation theory of hydration forces: The dramatic effects of inhomogeneous boundary conditions. Phys Rev A Gen Phys. 1989 Dec 1;40(11):6431–6437. doi: 10.1103/physreva.40.6431. [DOI] [PubMed] [Google Scholar]
  10. Kuznetsova N., Rau D. C., Parsegian V. A., Leikin S. Solvent hydrogen-bond network in protein self-assembly: solvation of collagen triple helices in nonaqueous solvents. Biophys J. 1997 Jan;72(1):353–362. doi: 10.1016/S0006-3495(97)78674-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leikin S., Parsegian V. A., Rau D. C., Rand R. P. Hydration forces. Annu Rev Phys Chem. 1993;44:369–395. doi: 10.1146/annurev.pc.44.100193.002101. [DOI] [PubMed] [Google Scholar]
  12. Leikin S., Parsegian V. A., Yang W., Walrafen G. E. Raman spectral evidence for hydration forces between collagen triple helices. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11312–11317. doi: 10.1073/pnas.94.21.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leikin S., Rau D. C., Parsegian V. A. Direct measurement of forces between self-assembled proteins: temperature-dependent exponential forces between collagen triple helices. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):276–280. doi: 10.1073/pnas.91.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leikin S., Rau D. C., Parsegian V. A. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Biol. 1995 Mar;2(3):205–210. doi: 10.1038/nsb0395-205. [DOI] [PubMed] [Google Scholar]
  15. Mariani P., Ciuchi F., Saturni L. Helix-specific interactions induce condensation of guanosine four-stranded helices in concentrated salt solutions. Biophys J. 1998 Jan;74(1):430–435. doi: 10.1016/S0006-3495(98)77800-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mariani P., Saturni L. Measurement of intercolumnar forces between parallel guanosine four-stranded helices. Biophys J. 1996 Jun;70(6):2867–2874. doi: 10.1016/S0006-3495(96)79856-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McIntosh T. J., Simon S. A. Hydration and steric pressures between phospholipid bilayers. Annu Rev Biophys Biomol Struct. 1994;23:27–51. doi: 10.1146/annurev.bb.23.060194.000331. [DOI] [PubMed] [Google Scholar]
  18. Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
  19. Rau D. C., Lee B., Parsegian V. A. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: hydration forces between parallel DNA double helices. Proc Natl Acad Sci U S A. 1984 May;81(9):2621–2625. doi: 10.1073/pnas.81.9.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rau D. C., Parsegian V. A. Direct measurement of forces between linear polysaccharides xanthan and schizophyllan. Science. 1990 Sep 14;249(4974):1278–1281. doi: 10.1126/science.2144663. [DOI] [PubMed] [Google Scholar]
  21. Rau D. C., Parsegian V. A. Direct measurement of temperature-dependent solvation forces between DNA double helices. Biophys J. 1992 Jan;61(1):260–271. doi: 10.1016/S0006-3495(92)81832-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rau D. C., Parsegian V. A. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys J. 1992 Jan;61(1):246–259. doi: 10.1016/S0006-3495(92)81831-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhodes D., Klug A. Helical periodicity of DNA determined by enzyme digestion. Nature. 1980 Aug 7;286(5773):573–578. doi: 10.1038/286573a0. [DOI] [PubMed] [Google Scholar]
  24. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  25. WILKINS M. H. F., STOKES A. R., WILSON H. R. Molecular structure of deoxypentose nucleic acids. Nature. 1953 Apr 25;171(4356):738–740. doi: 10.1038/171738a0. [DOI] [PubMed] [Google Scholar]
  26. Wagner K., Keyes E., Kephart T. W., Edwards G. Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA. Biophys J. 1997 Jul;73(1):21–30. doi: 10.1016/S0006-3495(97)78043-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Widom J., Baldwin R. L. Monomolecular condensation of lambda-DNA induced by cobalt hexamine. Biopolymers. 1983 Jun;22(6):1595–1620. doi: 10.1002/bip.360220612. [DOI] [PubMed] [Google Scholar]
  28. Zimmerman S. B., Pheiffer B. H. Helical parameters of DNA do not change when DNA fibers are wetted: X-ray diffraction study. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2703–2707. doi: 10.1073/pnas.76.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES