Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):2712–2720. doi: 10.1016/S0006-3495(98)77715-X

Visualization of trp repressor and its complexes with DNA by atomic force microscopy.

E Margeat 1, C Le Grimellec 1, C A Royer 1
PMCID: PMC1299945  PMID: 9826594

Abstract

We used tapping mode atomic force microscopy to visualize the protein/protein and the protein/DNA complexes involved in transcriptional regulation by the trp repressor (TR). Plasmid fragments bearing the natural operators trp EDCBA and trp R, as well as nonspecific fragments, were deposited onto mica in the presence of varying concentrations of TR and imaged. In the presence of L-tryptophan, both specific and nonspecific complexes of TR with DNA are apparent, as well as free TR assemblies directly deposited onto the mica surface. We observed the expected decrease in specificity of TR for its operators with increasing protein concentration (1-5 nM). This loss of DNA-binding specificity is accompanied by the formation of large protein assemblies of varying sizes on the mica surface, consistent with the known tendency of the repressor to oligomerize in solution. When the co-repressor is omitted, no repressor molecules are seen, either on the plasmid fragments or free on the mica surface, probably because of the formation of larger aggregates that are removed from the surface upon washing. All these findings support a role for protein/protein interactions as an additional mechanism of transcriptional regulation by the trp repressor.

Full Text

The Full Text of this article is available as a PDF (423.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bareket-Samish A., Cohen I., Haran T. E. Repressor assembly at trp binding sites is dependent on the identity of the intervening dinucleotide between the binding half sites. J Mol Biol. 1997 Mar 21;267(1):103–117. doi: 10.1006/jmbi.1996.0826. [DOI] [PubMed] [Google Scholar]
  2. Bennett G. N., Yanofsky C. Sequence analysis of operator constitutive mutants of the tryptophan operon of Escherichia coli. J Mol Biol. 1978 May 15;121(2):179–192. doi: 10.1016/s0022-2836(78)80004-7. [DOI] [PubMed] [Google Scholar]
  3. Bustamante C., Rivetti C., Keller D. J. Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol. 1997 Oct;7(5):709–716. doi: 10.1016/s0959-440x(97)80082-6. [DOI] [PubMed] [Google Scholar]
  4. Cherny D. I., Fourcade A., Svinarchuk F., Nielsen P. E., Malvy C., Delain E. Analysis of various sequence-specific triplexes by electron and atomic force microscopies. Biophys J. 1998 Feb;74(2 Pt 1):1015–1023. doi: 10.1016/S0006-3495(98)74026-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Czernik P. J., Shin D. S., Hurlburt B. K. Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. J Biol Chem. 1994 Nov 11;269(45):27869–27875. [PubMed] [Google Scholar]
  6. Engel A., Schoenenberger C. A., Müller D. J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struct Biol. 1997 Apr;7(2):279–284. doi: 10.1016/s0959-440x(97)80037-1. [DOI] [PubMed] [Google Scholar]
  7. Erie D. A., Yang G., Schultz H. C., Bustamante C. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science. 1994 Dec 2;266(5190):1562–1566. doi: 10.1126/science.7985026. [DOI] [PubMed] [Google Scholar]
  8. Fernando T., Royer C. Role of protein--protein interactions in the regulation of transcription by trp repressor investigated by fluorescence spectroscopy. Biochemistry. 1992 Apr 7;31(13):3429–3441. doi: 10.1021/bi00128a018. [DOI] [PubMed] [Google Scholar]
  9. Fritzsche W., Schaper A., Jovin T. M. Probing chromatin with the scanning force microscope. Chromosoma. 1994 Jul;103(4):231–236. doi: 10.1007/BF00352247. [DOI] [PubMed] [Google Scholar]
  10. Fritzsche W., Takac L., Henderson E. Application of atomic force microscopy to visualization of DNA, chromatin, and chromosomes. Crit Rev Eukaryot Gene Expr. 1997;7(3):231–240. doi: 10.1615/critreveukargeneexpr.v7.i3.30. [DOI] [PubMed] [Google Scholar]
  11. Gunsalus R. P., Yanofsky C. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7117–7121. doi: 10.1073/pnas.77.12.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guthold M., Bezanilla M., Erie D. A., Jenkins B., Hansma H. G., Bustamante C. Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12927–12931. doi: 10.1073/pnas.91.26.12927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  14. Hansma H. G., Kim K. J., Laney D. E., Garcia R. A., Argaman M., Allen M. J., Parsons S. M. Properties of biomolecules measured from atomic force microscope images: a review. J Struct Biol. 1997 Jul;119(2):99–108. doi: 10.1006/jsbi.1997.3855. [DOI] [PubMed] [Google Scholar]
  15. Hansma H. G., Laney D. E., Bezanilla M., Sinsheimer R. L., Hansma P. K. Applications for atomic force microscopy of DNA. Biophys J. 1995 May;68(5):1672–1677. doi: 10.1016/S0006-3495(95)80343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haran T. E., Joachimiak A., Sigler P. B. The DNA target of the trp repressor. EMBO J. 1992 Aug;11(8):3021–3030. doi: 10.1002/j.1460-2075.1992.tb05372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haran T. E. Statistical and structural analysis of trp binding sites: comparison of natural and in vitro selected sequences. J Biomol Struct Dyn. 1998 Feb;15(4):689–701. doi: 10.1080/07391102.1998.10508985. [DOI] [PubMed] [Google Scholar]
  18. Heatwole V. M., Somerville R. L. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12. J Bacteriol. 1991 Jan;173(1):108–115. doi: 10.1128/jb.173.1.108-115.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joachimiak A., Kelley R. L., Gunsalus R. P., Yanofsky C., Sigler P. B. Purification and characterization of trp aporepressor. Proc Natl Acad Sci U S A. 1983 Feb;80(3):668–672. doi: 10.1073/pnas.80.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  21. Kumamoto A. A., Miller W. G., Gunsalus R. P. Escherichia coli tryptophan repressor binds multiple sites within the aroH and trp operators. Genes Dev. 1987 Aug;1(6):556–564. doi: 10.1101/gad.1.6.556. [DOI] [PubMed] [Google Scholar]
  22. Lawson C. L., Carey J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature. 1993 Nov 11;366(6451):178–182. doi: 10.1038/366178a0. [DOI] [PubMed] [Google Scholar]
  23. Le Cam E., Frechon D., Barray M., Fourcade A., Delain E. Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11816–11820. doi: 10.1073/pnas.91.25.11816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LeTilly V., Royer C. A. Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. Biochemistry. 1993 Aug 3;32(30):7753–7758. doi: 10.1021/bi00081a021. [DOI] [PubMed] [Google Scholar]
  25. Liu Y. C., Matthews K. S. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size. J Biol Chem. 1993 Nov 5;268(31):23239–23249. [PubMed] [Google Scholar]
  26. Lyubchenko Y. L., Jacobs B. L., Lindsay S. M., Stasiak A. Atomic force microscopy of nucleoprotein complexes. Scanning Microsc. 1995 Sep;9(3):705–727. [PubMed] [Google Scholar]
  27. Lyubchenko Y. L., Shlyakhtenko L. S., Aki T., Adhya S. Atomic force microscopic demonstration of DNA looping by GalR and HU. Nucleic Acids Res. 1997 Feb 15;25(4):873–876. doi: 10.1093/nar/25.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martin K. S., Royer C. A., Howard K. P., Carey J., Liu Y. C., Matthews K., Heyduk E., Lee J. C. Electrostatic forces contribute to interactions between trp repressor dimers. Biophys J. 1994 Apr;66(4):1167–1173. doi: 10.1016/S0006-3495(94)80898-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mastrangelo I. A., Bezanilla M., Hansma P. K., Hough P. V., Hansma H. G. Structures of large T antigen at the origin of SV40 DNA replication by atomic force microscopy. Biophys J. 1994 Feb;66(2 Pt 1):293–298. doi: 10.1016/s0006-3495(94)80800-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mou J., Czajkowsky D. M., Zhang Y., Shao Z. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 1995 Sep 11;371(3):279–282. doi: 10.1016/0014-5793(95)00906-p. [DOI] [PubMed] [Google Scholar]
  32. Palecek E., Vlk D., Stanková V., Brázda V., Vojtesek B., Hupp T. R., Schaper A., Jovin T. M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997 Oct;15(18):2201–2209. doi: 10.1038/sj.onc.1201398. [DOI] [PubMed] [Google Scholar]
  33. Paluh J. L., Yanofsky C. High level production and rapid purification of the E. coli trp repressor. Nucleic Acids Res. 1986 Oct 24;14(20):7851–7860. doi: 10.1093/nar/14.20.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reedstrom R. J., Brown M. P., Grillo A., Roen D., Royer C. A. Affinity and specificity of trp repressor-DNA interactions studied with fluorescent oligonucleotides. J Mol Biol. 1997 Oct 31;273(3):572–585. doi: 10.1006/jmbi.1997.1333. [DOI] [PubMed] [Google Scholar]
  35. Reedstrom R. J., Martin K. S., Vangala S., Mahoney S., Wilker E. W., Royer C. A. Characterization of charge change super-repressor mutants of trp repressor: effects on oligomerization conformation, ligation and stability. J Mol Biol. 1996 Nov 22;264(1):32–45. doi: 10.1006/jmbi.1996.0621. [DOI] [PubMed] [Google Scholar]
  36. Rippe K., Guthold M., von Hippel P. H., Bustamante C. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J Mol Biol. 1997 Jul 11;270(2):125–138. doi: 10.1006/jmbi.1997.1079. [DOI] [PubMed] [Google Scholar]
  37. Rivetti C., Guthold M., Bustamante C. Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol. 1996 Dec 20;264(5):919–932. doi: 10.1006/jmbi.1996.0687. [DOI] [PubMed] [Google Scholar]
  38. Rose J. K., Yanofsky C. Interaction of the operator of the tryptophan operon with repressor. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3134–3138. doi: 10.1073/pnas.71.8.3134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schaper A., Starink J. P., Jovin T. M. The scanning force microscopy of DNA in air and in n-propanol using new spreading agents. FEBS Lett. 1994 Nov 21;355(1):91–95. doi: 10.1016/0014-5793(94)01166-4. [DOI] [PubMed] [Google Scholar]
  40. Staacke D., Walter B., Kisters-Woike B., von Wilcken-Bergmann B., Müller-Hill B. How Trp repressor binds to its operator. EMBO J. 1990 Jun;9(6):1963–1967. doi: 10.1002/j.1460-2075.1990.tb08324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vesenka J., Guthold M., Tang C. L., Keller D., Delaine E., Bustamante C. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy. 1992 Jul;42-44(Pt B):1243–1249. doi: 10.1016/0304-3991(92)90430-r. [DOI] [PubMed] [Google Scholar]
  42. Wyman C., Grotkopp E., Bustamante C., Nelson H. C. Determination of heat-shock transcription factor 2 stoichiometry at looped DNA complexes using scanning force microscopy. EMBO J. 1995 Jan 3;14(1):117–123. doi: 10.1002/j.1460-2075.1995.tb06981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wyman C., Rombel I., North A. K., Bustamante C., Kustu S. Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science. 1997 Mar 14;275(5306):1658–1661. doi: 10.1126/science.275.5306.1658. [DOI] [PubMed] [Google Scholar]
  44. Yang J., Gunasekera A., Lavoie T. A., Jin L., Lewis D. E., Carey J. In vivo and in vitro studies of TrpR-DNA interactions. J Mol Biol. 1996 Apr 26;258(1):37–52. doi: 10.1006/jmbi.1996.0232. [DOI] [PubMed] [Google Scholar]
  45. Yang J., Shao Z. Recent advances in biological atomic force microscopy. Micron. 1995;26(1):35–49. doi: 10.1016/0968-4328(94)00041-n. [DOI] [PubMed] [Google Scholar]
  46. Yang J., Takeyasu K., Shao Z. Atomic force microscopy of DNA molecules. FEBS Lett. 1992 Apr 20;301(2):173–176. doi: 10.1016/0014-5793(92)81241-d. [DOI] [PubMed] [Google Scholar]
  47. Zhang R. G., Joachimiak A., Lawson C. L., Schevitz R. W., Otwinowski Z., Sigler P. B. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity. Nature. 1987 Jun 18;327(6123):591–597. doi: 10.1038/327591a0. [DOI] [PubMed] [Google Scholar]
  48. Zurawski G., Gunsalus R. P., Brown K. D., Yanofsky C. Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli. J Mol Biol. 1981 Jan 5;145(1):47–73. doi: 10.1016/0022-2836(81)90334-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES