Abstract
The effects of the applied stretch and MgADP binding on the structure of the actomyosin cross-bridges in rabbit and/or frog skeletal muscle fibers in the rigor state have been investigated with improved resolution by x-ray diffraction using synchrotron radiation. The results showed a remarkable structural similarity between cross-bridge states induced by stretch and MgADP binding. The intensities of the 14.4- and 7.2-nm meridional reflections increased by approximately 23 and 47%, respectively, when 1 mM MgADP was added to the rigor rabbit muscle fibers in the presence of ATP-depletion backup system and an inhibitor for muscle adenylate kinase or by approximately 33 and 17%, respectively, when rigor frog muscle was stretched by approximately 4.5% of the initial muscle length. In addition, both MgADP binding and stretch induced a small but genuine intensity decrease in the region close to the meridian of the 5.9-nm layer line while retaining the intensity profile of its outer portion. No appreciable influence was observed in the intensities of the higher order meridional reflections of the 14.4-nm repeat and the other actin-based reflections as well as the equatorial reflections, indicating a lack of detachment of cross-bridges in both cases. The changes in the axial spacings of the actin-based and the 14.4-nm-based reflections were observed and associated with the tension change. These results indicate that stretch and ADP binding mediate similar structural changes, being in the correct direction to those expected for that the conformational changes are induced in the outer portion distant from the catalytic domain of attached cross-bridges. Modeling of conformational changes of the attached myosin head suggested a small but significant movement (about 10-20 degrees) in the light chain-binding domain of the head toward the M-line of the sarcomere. Both chemical (ADP binding) and mechanical (stretch) intervensions can reverse the contractile cycle by causing a backward movement of this domain of attached myosin heads in the rigor state.
Full Text
The Full Text of this article is available as a PDF (1,012.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ajtai K., French A. R., Burghardt T. P. Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance. Biophys J. 1989 Sep;56(3):535–541. doi: 10.1016/S0006-3495(89)82700-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen T. S., Ling N., Irving M., Goldman Y. E. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers. Biophys J. 1996 Apr;70(4):1847–1862. doi: 10.1016/S0006-3495(96)79750-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amemiya Y. Imaging plates for use with synchrotron radiation. J Synchrotron Radiat. 1995 Jan 1;2(Pt 1):13–21. doi: 10.1107/S0909049594007405. [DOI] [PubMed] [Google Scholar]
- Amemiya Y., Wakabayashi K., Tanaka H., Ueno Y., Miyahara J. Laser-stimulated luminescence used to measure x-ray diffraction of a contracting striated muscle. Science. 1987 Jul 10;237(4811):164–168. doi: 10.1126/science.3496662. [DOI] [PubMed] [Google Scholar]
- Arata T. Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers. J Mol Biol. 1990 Jul 20;214(2):471–478. doi: 10.1016/0022-2836(90)90194-Q. [DOI] [PubMed] [Google Scholar]
- Baker J. E., Brust-Mascher I., Ramachandran S., LaConte L. E., Thomas D. D. A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2944–2949. doi: 10.1073/pnas.95.6.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barsotti R. J., Dantzig J. A., Goldman Y. E. Myosin isoforms show different strokes for different blokes. Nat Struct Biol. 1996 Sep;3(9):737–739. doi: 10.1038/nsb0996-737. [DOI] [PubMed] [Google Scholar]
- Berger C. L., Craik J. S., Trentham D. R., Corrie J. E., Goldman Y. E. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain. Biophys J. 1996 Dec;71(6):3330–3343. doi: 10.1016/S0006-3495(96)79526-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burghardt T. P., Garamszegi S. P., Ajtai K. Probes bound to myosin Cys-707 rotate during length transients in contraction. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9631–9636. doi: 10.1073/pnas.94.18.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke R., Franks K. All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry. 1980 May 13;19(10):2265–2269. doi: 10.1021/bi00551a042. [DOI] [PubMed] [Google Scholar]
- Cooke R. Stress does not alter the conformation of a domain of the myosin cross-bridge in rigor muscle fibres. Nature. 1981 Dec 10;294(5841):570–571. doi: 10.1038/294570a0. [DOI] [PubMed] [Google Scholar]
- Dantzig J. A., Hibberd M. G., Trentham D. R., Goldman Y. E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol. 1991 Jan;432:639–680. doi: 10.1113/jphysiol.1991.sp018405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dos Remedios C. G., Millikan R. G., Morales M. F. Polarization of tryptophan fluorescence from single striated muscle fibers. A molecular probe of contractile state. J Gen Physiol. 1972 Jan;59(1):103–120. doi: 10.1085/jgp.59.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fajer P. G., Fajer E. A., Matta J. J., Thomas D. D. Effect of ADP on the orientation of spin-labeled myosin heads in muscle fibers: a high-resolution study with deuterated spin labels. Biochemistry. 1990 Jun 19;29(24):5865–5871. doi: 10.1021/bi00476a031. [DOI] [PubMed] [Google Scholar]
- Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
- Hambly B., Franks K., Cooke R. Orientation of spin-labeled light chain-2 exchanged onto myosin cross-bridges in glycerinated muscle fibers. Biophys J. 1991 Jan;59(1):127–138. doi: 10.1016/S0006-3495(91)82205-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson J., O'Brien E. J., Bennett P. M. Structure of the myosin-containing filament assembly (A-segment) separated from frog skeletal muscle. J Mol Biol. 1971 Jun 28;58(3):865–871. doi: 10.1016/0022-2836(71)90045-3. [DOI] [PubMed] [Google Scholar]
- Haselgrove J. C., Reedy M. K. Modeling rigor cross-bridge patterns in muscle I. Initial studies of the rigor lattice of insect flight muscle. Biophys J. 1978 Dec;24(3):713–728. doi: 10.1016/S0006-3495(78)85415-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haselgrove J. C. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J Mol Biol. 1975 Feb 15;92(1):113–143. doi: 10.1016/0022-2836(75)90094-7. [DOI] [PubMed] [Google Scholar]
- Higuchi H., Yanagida T., Goldman Y. E. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys J. 1995 Sep;69(3):1000–1010. doi: 10.1016/S0006-3495(95)79975-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
- Huxley H. E., Stewart A., Sosa H., Irving T. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J. 1994 Dec;67(6):2411–2421. doi: 10.1016/S0006-3495(94)80728-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving M., Lombardi V., Piazzesi G., Ferenczi M. A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature. 1992 May 14;357(6374):156–158. doi: 10.1038/357156a0. [DOI] [PubMed] [Google Scholar]
- Irving M., St Claire Allen T., Sabido-David C., Craik J. S., Brandmeier B., Kendrick-Jones J., Corrie J. E., Trentham D. R., Goldman Y. E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature. 1995 Jun 22;375(6533):688–691. doi: 10.1038/375688a0. [DOI] [PubMed] [Google Scholar]
- Jontes J. D., Milligan R. A. Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis. J Cell Biol. 1997 Nov 3;139(3):683–693. doi: 10.1083/jcb.139.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katayama E. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay. J Mol Biol. 1998 May 1;278(2):349–367. doi: 10.1006/jmbi.1998.1715. [DOI] [PubMed] [Google Scholar]
- Kim D. S., Takezawa Y., Ogino M., Kobayashi T., Arata T., Wakabayashi K. X-ray diffraction studies on the structural changes of rigor muscles induced by binding of phosphate analogs in the presence of MgADP. Biophys Chem. 1998 Aug 4;74(1):71–82. doi: 10.1016/s0301-4622(98)00166-5. [DOI] [PubMed] [Google Scholar]
- Lombardi V., Piazzesi G., Ferenczi M. A., Thirlwell H., Dobbie I., Irving M. Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature. 1995 Apr 6;374(6522):553–555. doi: 10.1038/374553a0. [DOI] [PubMed] [Google Scholar]
- Lovell S. J., Harrington W. F. Measurement of the fraction of myosin heads bound to actin in rabbit skeletal myofibrils in rigor. J Mol Biol. 1981 Jul 15;149(4):659–674. doi: 10.1016/0022-2836(81)90352-1. [DOI] [PubMed] [Google Scholar]
- Marston S. B., Rodger C. D., Tregear R. T. Changes in muscle crossbridges when beta, gamma-imido-ATP binds to myosin. J Mol Biol. 1976 Jun 14;104(1):263–276. doi: 10.1016/0022-2836(76)90012-7. [DOI] [PubMed] [Google Scholar]
- Marston S. The nucleotide complexes of myosin in glycerol-extracted muscle fibres. Biochim Biophys Acta. 1973 May 30;305(2):397–412. doi: 10.1016/0005-2728(73)90186-2. [DOI] [PubMed] [Google Scholar]
- Mendelson R., Morris E. P. The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8533–8538. doi: 10.1073/pnas.94.16.8533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A., Tregear R. T. Structure of insect fibrillar flight muscle in the presence and absence of ATP. J Mol Biol. 1972 Sep 14;70(1):85–104. doi: 10.1016/0022-2836(72)90165-9. [DOI] [PubMed] [Google Scholar]
- Namba K., Wakabayashi K., Mitsui T. X-ray structure analysis of the thin filament of crab striated muscle in the rigor state. J Mol Biol. 1980 Mar 25;138(1):1–26. doi: 10.1016/s0022-2836(80)80002-7. [DOI] [PubMed] [Google Scholar]
- Naylor G. R., Podolsky R. J. X-ray diffraction of strained muscle fibers in rigor. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5559–5563. doi: 10.1073/pnas.78.9.5559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podolsky R. J., Naylor G. R., Arata T. Cross-bridge properties in the rigor state. Soc Gen Physiol Ser. 1982;37:79–89. [PubMed] [Google Scholar]
- Rodger C. D., Tregear R. T. Letter: Crossbridge angle when ADP is bound to myosin. J Mol Biol. 1974 Jun 25;86(2):495–497. doi: 10.1016/0022-2836(74)90033-3. [DOI] [PubMed] [Google Scholar]
- Sabido-David C., Hopkins S. C., Saraswat L. D., Lowey S., Goldman Y. E., Irving M. Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres. J Mol Biol. 1998 Jun 5;279(2):387–402. doi: 10.1006/jmbi.1998.1771. [DOI] [PubMed] [Google Scholar]
- Schoenberg M., Eisenberg E. ADP binding to myosin cross-bridges and its effect on the cross-bridge detachment rate constants. J Gen Physiol. 1987 Jun;89(6):905–920. doi: 10.1085/jgp.89.6.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squire J. M., Harford J. J. Actin filament organization and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak binding states. J Muscle Res Cell Motil. 1988 Aug;9(4):344–358. doi: 10.1007/BF01773878. [DOI] [PubMed] [Google Scholar]
- Suda H., Sugimoto M., Chiba M., Uemura C. Direct measurement for elasticity of myosin head. Biochem Biophys Res Commun. 1995 Jun 6;211(1):219–225. doi: 10.1006/bbrc.1995.1799. [DOI] [PubMed] [Google Scholar]
- Sugimoto Y., Tokunaga M., Takezawa Y., Ikebe M., Wakabayashi K. Conformational changes of the myosin heads during hydrolysis of ATP as analyzed by x-ray solution scattering. Biophys J. 1995 Apr;68(4 Suppl):29S–34S. [PMC free article] [PubMed] [Google Scholar]
- Takemori S., Yamaguchi M., Yagi N. Effects of adenosine diphosphate on the structure of myosin cross-bridges: an X-ray diffraction study on a single skinned frog muscle fibre. J Muscle Res Cell Motil. 1995 Dec;16(6):571–577. doi: 10.1007/BF00130238. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Wakabayashi K., Amemiya Y. Changes in the X-ray diffraction pattern from rigor muscles by application of external length changes. Adv Biophys. 1991;27:105–114. doi: 10.1016/0065-227x(91)90011-2. [DOI] [PubMed] [Google Scholar]
- Tanner J. W., Thomas D. D., Goldman Y. E. Transients in orientation of a fluorescent cross-bridge probe following photolysis of caged nucleotides in skeletal muscle fibres. J Mol Biol. 1992 Jan 5;223(1):185–203. doi: 10.1016/0022-2836(92)90725-y. [DOI] [PubMed] [Google Scholar]
- Tawada K., Kimura M. Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations. J Muscle Res Cell Motil. 1986 Aug;7(4):339–350. doi: 10.1007/BF01753655. [DOI] [PubMed] [Google Scholar]
- Tawada K., Kimura M. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation. Biophys J. 1984 Mar;45(3):593–602. doi: 10.1016/S0006-3495(84)84197-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. D., Cooke R. Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys J. 1980 Dec;32(3):891–906. doi: 10.1016/S0006-3495(80)85024-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokunaga M., Sutoh K., Wakabayashi T. Structure and structural change of the myosin head. Adv Biophys. 1991;27:157–167. doi: 10.1016/0065-227x(91)90015-6. [DOI] [PubMed] [Google Scholar]
- Wakabayashi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J. 1994 Dec;67(6):2422–2435. doi: 10.1016/S0006-3495(94)80729-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
- Xu S., Brenner B., Yu L. C. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle. J Physiol. 1993 Jun;465:749–765. doi: 10.1113/jphysiol.1993.sp019704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagi N. Labelling of thin filaments by Myosin heads in contracting and rigor vertebrate skeletal muscles. Acta Crystallogr D Biol Crystallogr. 1996 Nov 1;52(Pt 6):1169–1173. doi: 10.1107/S0907444996010098. [DOI] [PubMed] [Google Scholar]
- Yagi N., Wakabayashi K., Iwamoto H., Horiuti K., Kojima I., Irving T. C., Takezawa Y., Sugimoto Y., Iwamoto S., Majima T. Small-Angle X-ray Diffraction of Muscle Using Undulator Radiation from the Tristan Main Ring at KEK. J Synchrotron Radiat. 1996 Nov 1;3(Pt 6):305–312. doi: 10.1107/S0909049596008928. [DOI] [PubMed] [Google Scholar]