Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9

Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer.

L R Forrest 1, D P Tieleman 1, M S Sansom 1
PMCID: PMC1300164  PMID: 10096886

Abstract

Integral membrane proteins containing at least one transmembrane (TM) alpha-helix are believed to account for between 20% and 30% of most genomes. There are several algorithms that accurately predict the number and position of TM helices within a membrane protein sequence. However, these methods tend to disagree over the beginning and end residues of TM helices, posing problems for subsequent modeling and simulation studies. Molecular dynamics (MD) simulations in an explicit lipid and water environment are used to help define the TM helix of the M2 protein from influenza A virus. Based on a comparison of the results of five different secondary structure prediction algorithms, three different helix lengths (an 18mer, a 26mer, and a 34mer) were simulated. Each simulation system contained 127 POPC molecules plus approximately 3500-4700 waters, giving a total of approximately 18,000-21,000 atoms. Two simulations, each of 2 ns duration, were run for the 18mer and 26mer, and five separate simulations were run for the 34mer, using different starting models generated by restrained in vacuo MD simulations. The total simulation time amounted to 11 ns. Analysis of the time-dependent secondary structure of the TM segments was used to define the regions that adopted a stable alpha-helical conformation throughout the simulation. This analysis indicates a core TM region of approximately 20 residues (from residue 22 to residue 43) that remained in an alpha-helical conformation. Analysis of atomic density profiles suggested that the 18mer helix revealed a local perturbation of the lipid bilayer. Polar side chains on either side of this region form relatively long-lived H-bonds to lipid headgroups and water molecules.

Full Text

The Full Text of this article is available as a PDF (309.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., Brünger A. T., Engelman D. M. Are there dominant membrane protein families with a given number of helices? Proteins. 1997 Aug;28(4):465–466. doi: 10.1002/(sici)1097-0134(199708)28:4<465::aid-prot1>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  2. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  3. Belohorcová K., Davis J. H., Woolf T. B., Roux B. Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J. 1997 Dec;73(6):3039–3055. doi: 10.1016/S0006-3495(97)78332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bodkin M. J., Goodfellow J. M. Competing interactions contributing to alpha-helical stability in aqueous solution. Protein Sci. 1995 Apr;4(4):603–612. doi: 10.1002/pro.5560040402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyd D., Schierle C., Beckwith J. How many membrane proteins are there? Protein Sci. 1998 Jan;7(1):201–205. doi: 10.1002/pro.5560070121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brandl C. J., Deber C. M. Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):917–921. doi: 10.1073/pnas.83.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chizhmakov I. V., Geraghty F. M., Ogden D. C., Hayhurst A., Antoniou M., Hay A. J. Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. J Physiol. 1996 Jul 15;494(Pt 2):329–336. doi: 10.1113/jphysiol.1996.sp021495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cserzö M., Bernassau J. M., Simon I., Maigret B. New alignment strategy for transmembrane proteins. J Mol Biol. 1994 Oct 28;243(3):388–396. doi: 10.1006/jmbi.1994.1666. [DOI] [PubMed] [Google Scholar]
  10. Daura X., Jaun B., Seebach D., van Gunsteren W. F., Mark A. E. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol. 1998 Jul 31;280(5):925–932. doi: 10.1006/jmbi.1998.1885. [DOI] [PubMed] [Google Scholar]
  11. Deber C. M., Goto N. K. Folding proteins into membranes. Nat Struct Biol. 1996 Oct;3(10):815–818. doi: 10.1038/nsb1096-815. [DOI] [PubMed] [Google Scholar]
  12. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  13. Duff K. C., Ashley R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology. 1992 Sep;190(1):485–489. doi: 10.1016/0042-6822(92)91239-q. [DOI] [PubMed] [Google Scholar]
  14. Duff K. C., Kelly S. M., Price N. C., Bradshaw J. P. The secondary structure of influenza A M2 transmembrane domain. A circular dichroism study. FEBS Lett. 1992 Oct 26;311(3):256–258. doi: 10.1016/0014-5793(92)81114-2. [DOI] [PubMed] [Google Scholar]
  15. Forrest L. R., DeGrado W. F., Dieckmann G. R., Sansom M. S. Two models of the influenza A M2 channel domain: verification by comparison. Fold Des. 1998;3(6):443–448. doi: 10.1016/S1359-0278(98)00061-3. [DOI] [PubMed] [Google Scholar]
  16. Forrest L. R., Sansom M. S. Simulations of the M2 channel for influenza A virus. Biochem Soc Trans. 1998 Aug;26(3):S303–S303. doi: 10.1042/bst026s303. [DOI] [PubMed] [Google Scholar]
  17. Gray T. M., Matthews B. W. Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol. 1984 May 5;175(1):75–81. doi: 10.1016/0022-2836(84)90446-7. [DOI] [PubMed] [Google Scholar]
  18. He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994 Mar 15;33(10):3038–3049. doi: 10.1021/bi00176a037. [DOI] [PubMed] [Google Scholar]
  21. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  22. Kerr I. D., Sankararamakrishnan R., Smart O. S., Sansom M. S. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys J. 1994 Oct;67(4):1501–1515. doi: 10.1016/S0006-3495(94)80624-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
  25. Lear J. D., Wasserman Z. R., DeGrado W. F. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988 May 27;240(4856):1177–1181. doi: 10.1126/science.2453923. [DOI] [PubMed] [Google Scholar]
  26. Lester H. A. The permeation pathway of neurotransmitter-gated ion channels. Annu Rev Biophys Biomol Struct. 1992;21:267–292. doi: 10.1146/annurev.bb.21.060192.001411. [DOI] [PubMed] [Google Scholar]
  27. Marrink S. J., Berger O., Tieleman P., Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J. 1998 Feb;74(2 Pt 1):931–943. doi: 10.1016/S0006-3495(98)74016-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nikiforovich G. V. A novel, non-statistical method for predicting breaks in transmembrane helices. Protein Eng. 1998 Apr;11(4):279–283. doi: 10.1093/protein/11.4.279. [DOI] [PubMed] [Google Scholar]
  29. Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
  30. Pinto L. H., Dieckmann G. R., Gandhi C. S., Papworth C. G., Braman J., Shaughnessy M. A., Lear J. D., Lamb R. A., DeGrado W. F. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11301–11306. doi: 10.1073/pnas.94.21.11301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
  32. Rost B., Fariselli P., Casadio R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 1996 Aug;5(8):1704–1718. doi: 10.1002/pro.5560050824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell R. B., Barton G. J. The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J Mol Biol. 1993 Dec 20;234(4):951–957. doi: 10.1006/jmbi.1993.1649. [DOI] [PubMed] [Google Scholar]
  34. Sakaguchi T., Tu Q., Pinto L. H., Lamb R. A. The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5000–5005. doi: 10.1073/pnas.94.10.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sansom M. S., Kerr I. D., Smith G. R., Son H. S. The influenza A virus M2 channel: a molecular modeling and simulation study. Virology. 1997 Jun 23;233(1):163–173. doi: 10.1006/viro.1997.8578. [DOI] [PubMed] [Google Scholar]
  36. Sansom M. S. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng. 1992 Jan;5(1):53–60. doi: 10.1093/protein/5.1.53. [DOI] [PubMed] [Google Scholar]
  37. Sansom M. S., Tieleman D. P., Forrest L. R., Berendsen H. J. Molecular dynamics simulations of membranes with embedded proteins and peptides: porin, alamethicin and influenza virus M2. Biochem Soc Trans. 1998 Aug;26(3):438–443. doi: 10.1042/bst0260438. [DOI] [PubMed] [Google Scholar]
  38. Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
  39. Sessions R. B., Gibbs N., Dempsey C. E. Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol. Biophys J. 1998 Jan;74(1):138–152. doi: 10.1016/S0006-3495(98)77775-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tieleman D. P., Forrest L. R., Sansom M. S., Berendsen H. J. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry. 1998 Dec 15;37(50):17554–17561. doi: 10.1021/bi981802y. [DOI] [PubMed] [Google Scholar]
  44. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  45. Tobias D. J., Gesell J., Klein M. L., Opella S. J. A simple protocol for identification of helical and mobile residues in membrane proteins. J Mol Biol. 1995 Oct 27;253(3):391–395. doi: 10.1006/jmbi.1995.0561. [DOI] [PubMed] [Google Scholar]
  46. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  47. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang C., Takeuchi K., Pinto L. H., Lamb R. A. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol. 1993 Sep;67(9):5585–5594. doi: 10.1128/jvi.67.9.5585-5594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]
  50. Woolf T. B. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics. Biophys J. 1997 Nov;73(5):2376–2392. doi: 10.1016/S0006-3495(97)78267-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Woolfson D. N., Mortishire-Smith R. J., Williams D. H. Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Commun. 1991 Mar 29;175(3):733–737. doi: 10.1016/0006-291x(91)91627-o. [DOI] [PubMed] [Google Scholar]
  52. Zhong Q., Husslein T., Moore P. B., Newns D. M., Pattnaik P., Klein M. L. The M2 channel of influenza A virus: a molecular dynamics study. FEBS Lett. 1998 Sep 4;434(3):265–271. doi: 10.1016/s0014-5793(98)00988-0. [DOI] [PubMed] [Google Scholar]
  53. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]
  54. von Heijne G. Proline kinks in transmembrane alpha-helices. J Mol Biol. 1991 Apr 5;218(3):499–503. doi: 10.1016/0022-2836(91)90695-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES