Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2018–2028. doi: 10.1016/S0006-3495(99)77359-5

Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells.

D Gall 1, J Gromada 1, I Susa 1, P Rorsman 1, A Herchuelz 1, K Bokvist 1
PMCID: PMC1300176  PMID: 10096898

Abstract

We have combined the patch-clamp technique with microfluorimetry of the cytoplasmic Ca2+ concentration ([Ca2+]i) to characterize Na/Ca exchange in mouse beta-cells and to determine its importance for [Ca2+]i buffering and shaping of glucose-induced electrical activity. The exchanger contributes to Ca2+ removal at [Ca2+]i above 1 microM, where it accounts for >35% of the total removal rate. At lower [Ca2+]i, thapsigargin-sensitive Ca2+-ATPases constitute a major (70% at 0.8 microM [Ca2+]i) mechanism for Ca2+ removal. The beta-cell Na/Ca exchanger is electrogenic and has a stoichiometry of three Na+ for one Ca2+. The current arising from its operation reverses at approximately -20 mV (current inward at more negative voltages), has a conductance of 53 pS/pF (14 microM [Ca2+]i), and is abolished by removal of external Na+ or by intracellularly applied XIP (exchange inhibitory peptide). Inhibition of the exchanger results in shortening (50%) of the bursts of action potentials of glucose-stimulated beta-cells in intact islets and a slight (5 mV) hyperpolarization. Mathematical simulations suggest that the stimulatory action of glucose on beta-cell electrical activity may be accounted for in part by glucose-induced reduction of the cytoplasmic Na+ concentration with resultant activation of the exchanger.

Full Text

The Full Text of this article is available as a PDF (146.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  2. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  3. Barcenas-Ruiz L., Beuckelmann D. J., Wier W. G. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science. 1987 Dec 18;238(4834):1720–1722. doi: 10.1126/science.3686010. [DOI] [PubMed] [Google Scholar]
  4. Bers D. M. Species differences and the role of sodium-calcium exchange in cardiac muscle relaxation. Ann N Y Acad Sci. 1991;639:375–385. doi: 10.1111/j.1749-6632.1991.tb17326.x. [DOI] [PubMed] [Google Scholar]
  5. Beuckelmann D. J., Wier W. G. Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. J Physiol. 1989 Jul;414:499–520. doi: 10.1113/jphysiol.1989.sp017700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bokvist K., Eliasson L., Ammälä C., Renström E., Rorsman P. Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J. 1995 Jan 3;14(1):50–57. doi: 10.1002/j.1460-2075.1995.tb06974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chin T. K., Spitzer K. W., Philipson K. D., Bridge J. H. The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res. 1993 Mar;72(3):497–503. doi: 10.1161/01.res.72.3.497. [DOI] [PubMed] [Google Scholar]
  8. Cook D. L., Crill W. E., Porte D., Jr Plateau potentials in pancreatic islet cells are voltage-dependent action potentials. Nature. 1980 Jul 24;286(5771):404–406. doi: 10.1038/286404a0. [DOI] [PubMed] [Google Scholar]
  9. Detimary P., Van den Berghe G., Henquin J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem. 1996 Aug 23;271(34):20559–20565. doi: 10.1074/jbc.271.34.20559. [DOI] [PubMed] [Google Scholar]
  10. DiPolo R., Beaugé L. Effects of vanadate on MgATP stimulation of Na-Ca exchange support kinase-phosphatase modulation in squid axons. Am J Physiol. 1994 May;266(5 Pt 1):C1382–C1391. doi: 10.1152/ajpcell.1994.266.5.C1382. [DOI] [PubMed] [Google Scholar]
  11. DiPolo R., Beaugé L. Regulation of Na-Ca exchange. An overview. Ann N Y Acad Sci. 1991;639:100–111. doi: 10.1111/j.1749-6632.1991.tb17294.x. [DOI] [PubMed] [Google Scholar]
  12. Egan T. M., Noble D., Noble S. J., Powell T., Spindler A. J., Twist V. W. Sodium-calcium exchange during the action potential in guinea-pig ventricular cells. J Physiol. 1989 Apr;411:639–661. doi: 10.1113/jphysiol.1989.sp017596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehara T., Matsuoka S., Noma A. Measurement of reversal potential of Na+-Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol. 1989 Mar;410:227–249. doi: 10.1113/jphysiol.1989.sp017530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
  15. Garcia-Barrado M. J., Gilon P., Sato Y., Nenquin M., Henquin J. C. No evidence for a role of reverse Na(+)-Ca2+ exchange in insulin release from mouse pancreatic islets. Am J Physiol. 1996 Sep;271(3 Pt 1):E426–E433. doi: 10.1152/ajpendo.1996.271.3.E426. [DOI] [PubMed] [Google Scholar]
  16. Gilon P., Henquin J. C. Activation of muscarinic receptors increases the concentration of free Na+ in mouse pancreatic B-cells. FEBS Lett. 1993 Jan 11;315(3):353–356. doi: 10.1016/0014-5793(93)81193-4. [DOI] [PubMed] [Google Scholar]
  17. Grapengiesser E., Berts A., Saha S., Lund P. E., Gylfe E., Hellman B. Dual effects of Na/K pump inhibition on cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Arch Biochem Biophys. 1993 Jan;300(1):372–377. doi: 10.1006/abbi.1993.1050. [DOI] [PubMed] [Google Scholar]
  18. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  19. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  20. Haworth R. A., Goknur A. B. Regulation of sodium-calcium exchange in intact myocytes by ATP and calcium. Ann N Y Acad Sci. 1996 Apr 15;779:464–479. doi: 10.1111/j.1749-6632.1996.tb44821.x. [DOI] [PubMed] [Google Scholar]
  21. Henquin J. C., Meissner H. P. Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia. 1984 Oct 15;40(10):1043–1052. doi: 10.1007/BF01971450. [DOI] [PubMed] [Google Scholar]
  22. Hilgemann D. W., Collins A., Cash D. P., Nagel G. A. Cardiac Na(+)-Ca2+ exchange system in giant membrane patches. Ann N Y Acad Sci. 1991;639:126–139. doi: 10.1111/j.1749-6632.1991.tb17296.x. [DOI] [PubMed] [Google Scholar]
  23. Hilgemann D. W., Collins A., Matsuoka S. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol. 1992 Dec;100(6):933–961. doi: 10.1085/jgp.100.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hilgemann D. W. Regulation and deregulation of cardiac Na(+)-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature. 1990 Mar 15;344(6263):242–245. doi: 10.1038/344242a0. [DOI] [PubMed] [Google Scholar]
  25. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keizer J., Magnus G. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys J. 1989 Aug;56(2):229–242. doi: 10.1016/S0006-3495(89)82669-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kofuji P., Lederer W. J., Schulze D. H. Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem. 1994 Feb 18;269(7):5145–5149. [PubMed] [Google Scholar]
  29. Lee S. L., Yu A. S., Lytton J. Tissue-specific expression of Na(+)-Ca2+ exchanger isoforms. J Biol Chem. 1994 May 27;269(21):14849–14852. [PubMed] [Google Scholar]
  30. Li Z., Matsuoka S., Hryshko L. V., Nicoll D. A., Bersohn M. M., Burke E. P., Lifton R. P., Philipson K. D. Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca2+ exchanger. J Biol Chem. 1994 Jul 1;269(26):17434–17439. [PubMed] [Google Scholar]
  31. Li Z., Nicoll D. A., Collins A., Hilgemann D. W., Filoteo A. G., Penniston J. T., Weiss J. N., Tomich J. M., Philipson K. D. Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. J Biol Chem. 1991 Jan 15;266(2):1014–1020. [PubMed] [Google Scholar]
  32. Martín F., Ribas J., Soria B. Cytosolic Ca2+ gradients in pancreatic islet-cells stimulated by glucose and carbachol. Biochem Biophys Res Commun. 1997 Jun 27;235(3):465–468. doi: 10.1006/bbrc.1997.6804. [DOI] [PubMed] [Google Scholar]
  33. McCarron J. G., Walsh J. V., Jr, Fay F. S. Sodium/calcium exchange regulates cytoplasmic calcium in smooth muscle. Pflugers Arch. 1994 Feb;426(3-4):199–205. doi: 10.1007/BF00374772. [DOI] [PubMed] [Google Scholar]
  34. Miura Y., Gilon P., Henquin J. C. Muscarinic stimulation increases Na+ entry in pancreatic B-cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochem Biophys Res Commun. 1996 Jul 5;224(1):67–73. doi: 10.1006/bbrc.1996.0985. [DOI] [PubMed] [Google Scholar]
  35. Nadal A., Valdeolmillos M., Soria B. Metabolic regulation of intracellular calcium concentration in mouse pancreatic islets of Langerhans. Am J Physiol. 1994 Nov;267(5 Pt 1):E769–E774. doi: 10.1152/ajpendo.1994.267.5.E769. [DOI] [PubMed] [Google Scholar]
  36. Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
  37. Nicoll D. A., Quednau B. D., Qui Z., Xia Y. R., Lusis A. J., Philipson K. D. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem. 1996 Oct 4;271(40):24914–24921. doi: 10.1074/jbc.271.40.24914. [DOI] [PubMed] [Google Scholar]
  38. Niki I., Ashcroft F. M., Ashcroft S. J. The dependence on intracellular ATP concentration of ATP-sensitive K-channels and of Na,K-ATPase in intact HIT-T15 beta-cells. FEBS Lett. 1989 Nov 6;257(2):361–364. doi: 10.1016/0014-5793(89)81572-8. [DOI] [PubMed] [Google Scholar]
  39. Noble D., Noble S. J., Bett G. C., Earm Y. E., Ho W. K., So I. K. The role of sodium-calcium exchange during the cardiac action potential. Ann N Y Acad Sci. 1991;639:334–353. doi: 10.1111/j.1749-6632.1991.tb17323.x. [DOI] [PubMed] [Google Scholar]
  40. Park Y. B., Herrington J., Babcock D. F., Hille B. Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J Physiol. 1996 Apr 15;492(Pt 2):329–346. doi: 10.1113/jphysiol.1996.sp021312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Plasman P. O., Herchuelz A. Regulation of Na+/Ca2+ exchange in the rat pancreatic B cell. Biochem J. 1992 Jul 1;285(Pt 1):123–127. doi: 10.1042/bj2850123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Quednau B. D., Nicoll D. A., Philipson K. D. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol. 1997 Apr;272(4 Pt 1):C1250–C1261. doi: 10.1152/ajpcell.1997.272.4.C1250. [DOI] [PubMed] [Google Scholar]
  43. Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
  44. Renström E., Ding W. G., Bokvist K., Rorsman P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron. 1996 Sep;17(3):513–522. doi: 10.1016/s0896-6273(00)80183-x. [DOI] [PubMed] [Google Scholar]
  45. Ribalet B., Beigelman P. M. Effects of sodium on beta-cell electrical activity. Am J Physiol. 1982 May;242(5):C296–C303. doi: 10.1152/ajpcell.1982.242.5.C296. [DOI] [PubMed] [Google Scholar]
  46. Rorsman P., Ammälä C., Berggren P. O., Bokvist K., Larsson O. Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells. EMBO J. 1992 Aug;11(8):2877–2884. doi: 10.1002/j.1460-2075.1992.tb05356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
  49. Saha S., Grapengiesser E. Glucose promotes turnover of Na+ in pancreatic beta-cells. Biochim Biophys Acta. 1995 Mar 16;1265(2-3):209–212. doi: 10.1016/0167-4889(94)00234-6. [DOI] [PubMed] [Google Scholar]
  50. Santos R. M., Rojas E. Muscarinic receptor modulation of glucose-induced electrical activity in mouse pancreatic B-cells. FEBS Lett. 1989 Jun 5;249(2):411–417. doi: 10.1016/0014-5793(89)80669-6. [DOI] [PubMed] [Google Scholar]
  51. Sherman A., Rinzel J., Keizer J. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J. 1988 Sep;54(3):411–425. doi: 10.1016/S0006-3495(88)82975-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Van Eylen F., Svoboda M., Herchuelz A. Identification, expression pattern and potential activity of Na/Ca exchanger isoforms in rat pancreatic B-cells. Cell Calcium. 1997 Mar;21(3):185–193. doi: 10.1016/s0143-4160(97)90043-9. [DOI] [PubMed] [Google Scholar]
  54. Zhou Z., Lipsius S. L. Na(+)-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium. J Physiol. 1993 Jul;466:263–285. [PMC free article] [PubMed] [Google Scholar]
  55. de Miguel R., Tamagawa T., Schmeer W., Nenquin M., Henquin J. C. Effects of acute sodium omission on insulin release, ionic flux and membrane potential in mouse pancreatic B-cells. Biochim Biophys Acta. 1988 Apr 25;969(2):198–207. doi: 10.1016/0167-4889(88)90076-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES