Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2043–2055. doi: 10.1016/S0006-3495(99)77361-3

Hydrodynamic properties of human erythrocyte band 3 solubilized in reduced Triton X-100.

A M Taylor 1, J Boulter 1, S E Harding 1, H Cölfen 1, A Watts 1
PMCID: PMC1300178  PMID: 10096900

Abstract

The oligomeric state and function of band 3, purified by sulfhydryl affinity chromatography in reduced Triton X-100, was investigated. Size exclusion high-performance liquid chromatography showed that a homogeneous population of band 3 dimers could be purified from whole erythrocyte membranes. The elution profile of band 3 purified from membranes that had been stripped of its cytoskeleton before solubilization was a broad single peak describing a heterogeneous population of oligomers with a mean Stokes radius of 100 A. Sedimentation velocity ultracentrifugation analysis confirmed particle heterogeneity and further showed monomer/dimer/tetramer equilibrium self-association. Whether the conversion of dimer to the form described by a Stokes radius of 100 A was initiated by removal of cytoskeletal components, alkali-induced changes in band 3 conformation, or alkali-induced loss of copurifying ligands remains unclear. After incubation at 20 degrees C for 24 h, both preparations of band 3 converted to a common form characterized by a mean Stokes radius of 114 A. This form of the protein, examined by equilibrium sedimentation ultracentrifugation, is able to self-associate reversibly, and the self-association can be described by a dimer/tetramer/hexamer model, although the presence of higher oligomers cannot be discounted. The ability of the different forms of the protein to bind stilbene disulfonates revealed that the dimer had the highest inhibitor binding affinity, and the form characterized by a mean Stokes radius of 114 A to have the lowest.

Full Text

The Full Text of this article is available as a PDF (145.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appell K. C., Low P. S. Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3. J Biol Chem. 1981 Nov 10;256(21):11104–11111. [PubMed] [Google Scholar]
  2. Batenjany M. M., Mizukami H., Salhany J. M. Near-UV circular dichroism of band 3. Evidence for intradomain conformational changes and interdomain interactions. Biochemistry. 1993 Jan 19;32(2):663–668. doi: 10.1021/bi00053a035. [DOI] [PubMed] [Google Scholar]
  3. Boodhoo A., Reithmeier R. A. Characterization of matrix-bound Band 3, the anion transport protein from human erythrocyte membranes. J Biol Chem. 1984 Jan 25;259(2):785–790. [PubMed] [Google Scholar]
  4. Casey J. R., Lieberman D. M., Reithmeier R. A. Purification and characterization of band 3 protein. Methods Enzymol. 1989;173:494–512. doi: 10.1016/s0076-6879(89)73034-2. [DOI] [PubMed] [Google Scholar]
  5. Casey J. R., Reithmeier R. A. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem. 1991 Aug 25;266(24):15726–15737. [PubMed] [Google Scholar]
  6. Casey J. R., Reithmeier R. A. Detergent interaction with band 3, a model polytopic membrane protein. Biochemistry. 1993 Feb 2;32(4):1172–1179. doi: 10.1021/bi00055a023. [DOI] [PubMed] [Google Scholar]
  7. Chétrite G., Cassoly R. Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Equilibrium measurements at physiological pH using matrix-bound proteins: the effects of ionic strength, deoxygenation and of 2,3-diphosphoglycerate. J Mol Biol. 1985 Oct 5;185(3):639–644. doi: 10.1016/0022-2836(85)90076-2. [DOI] [PubMed] [Google Scholar]
  8. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  9. Cornea R. L., Thomas D. D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry. 1994 Mar 15;33(10):2912–2920. doi: 10.1021/bi00176a022. [DOI] [PubMed] [Google Scholar]
  10. Creeth J. M., Harding S. E. Some observations on a new type of point average molecular weight. J Biochem Biophys Methods. 1982 Dec;7(1):25–34. doi: 10.1016/0165-022x(82)90033-1. [DOI] [PubMed] [Google Scholar]
  11. Cuppoletti J., Goldinger J., Kang B., Jo I., Berenski C., Jung C. Y. Anion carrier in the human erythrocyte exists as a dimer. J Biol Chem. 1985 Dec 15;260(29):15714–15717. [PubMed] [Google Scholar]
  12. Cölfen H., Harding S. E., Boulter J. M., Watts A. Hydrodynamic examination of the dimeric cytoplasmic domain of the human erythrocyte anion transporter, band 3. Biophys J. 1996 Sep;71(3):1611–1615. doi: 10.1016/S0006-3495(96)79364-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  14. Dolder M., Walz T., Hefti A., Engel A. Human erythrocyte band 3. Solubilization and reconstitution into two-dimensional crystals. J Mol Biol. 1993 May 5;231(1):119–132. doi: 10.1006/jmbi.1993.1261. [DOI] [PubMed] [Google Scholar]
  15. Dorst H. J., Schubert D. Self-association of band-protein from human erythrocyte membranes in aqueous solutions. Hoppe Seylers Z Physiol Chem. 1979 Nov;360(11):1605–1618. doi: 10.1515/bchm2.1979.360.2.1605. [DOI] [PubMed] [Google Scholar]
  16. Ercolani L., Brown D., Stuart-Tilley A., Alper S. L. Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes. Am J Physiol. 1992 May;262(5 Pt 2):F892–F896. doi: 10.1152/ajprenal.1992.262.5.F892. [DOI] [PubMed] [Google Scholar]
  17. Goldstein L., Davis-Amaral E. M., Musch M. W. Organic osmolyte channels: transport characteristics and regulation. Kidney Int. 1996 Jun;49(6):1690–1694. doi: 10.1038/ki.1996.249. [DOI] [PubMed] [Google Scholar]
  18. Grasberger B., Minton A. P., DeLisi C., Metzger H. Interaction between proteins localized in membranes. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6258–6262. doi: 10.1073/pnas.83.17.6258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harding S. E., Cölfen H. Inversion formulae for ellipsoid of revolution macromolecular shape functions. Anal Biochem. 1995 Jun 10;228(1):131–142. doi: 10.1006/abio.1995.1324. [DOI] [PubMed] [Google Scholar]
  20. Harrison M. L., Rathinavelu P., Arese P., Geahlen R. L., Low P. S. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem. 1991 Mar 5;266(7):4106–4111. [PubMed] [Google Scholar]
  21. Higashi T., Richards C. S., Uyeda K. The interaction of phosphofructokinase with erythrocyte membranes. J Biol Chem. 1979 Oct 10;254(19):9542–9550. [PubMed] [Google Scholar]
  22. Huber E., Bäumert H. G., Spatz-Kümbel G., Schubert D. Associations between erythrocyte band 3 protein and aldolase in detergent solution. Determining their stoichiometry by analytical ultracentrifugation. Eur J Biochem. 1996 Dec 1;242(2):293–300. doi: 10.1111/j.1432-1033.1996.0293r.x. [DOI] [PubMed] [Google Scholar]
  23. Kang D., Okubo K., Hamasaki N., Kuroda N., Shiraki H. A structural study of the membrane domain of band 3 by tryptic digestion. Conformational change of band 3 in situ induced by alkali treatment. J Biol Chem. 1992 Sep 25;267(27):19211–19217. [PubMed] [Google Scholar]
  24. Kliman H. J., Steck T. L. Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. A kinetic analysis. J Biol Chem. 1980 Jul 10;255(13):6314–6321. [PubMed] [Google Scholar]
  25. Klingenberg M. Membrane protein oligomeric structure and transport function. Nature. 1981 Apr 9;290(5806):449–454. doi: 10.1038/290449a0. [DOI] [PubMed] [Google Scholar]
  26. Knauf P. A., Brahm J. Functional asymmetry of the anion-exchange protein, capnophorin: effects on substrate and inhibitor binding. Methods Enzymol. 1989;173:432–453. doi: 10.1016/s0076-6879(89)73031-7. [DOI] [PubMed] [Google Scholar]
  27. Kotaki A., Naoi M., Yagi K. A diaminostilbene dye as a hydrophobic probe for proteins. Biochim Biophys Acta. 1971 Mar 23;229(3):547–556. doi: 10.1016/0005-2795(71)90270-4. [DOI] [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Lindenthal S., Schubert D. Monomeric erythrocyte band 3 protein transports anions. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6540–6544. doi: 10.1073/pnas.88.15.6540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu D., Kennedy S. D., Knauf P. A. Source of transport site asymmetry in the band 3 anion exchange protein determined by NMR measurements of external Cl- affinity. Biochemistry. 1996 Dec 3;35(48):15228–15235. doi: 10.1021/bi961443b. [DOI] [PubMed] [Google Scholar]
  31. Liu S. C., Palek J. Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes. J Biol Chem. 1984 Sep 25;259(18):11556–11562. [PubMed] [Google Scholar]
  32. Low P. S., Allen D. P., Zioncheck T. F., Chari P., Willardson B. M., Geahlen R. L., Harrison M. L. Tyrosine phosphorylation of band 3 inhibits peripheral protein binding. J Biol Chem. 1987 Apr 5;262(10):4592–4596. [PubMed] [Google Scholar]
  33. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  34. Low P. S., Waugh S. M., Zinke K., Drenckhahn D. The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science. 1985 Feb 1;227(4686):531–533. doi: 10.1126/science.2578228. [DOI] [PubMed] [Google Scholar]
  35. Low P. S., Westfall M. A., Allen D. P., Appell K. C. Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem. 1984 Nov 10;259(21):13070–13076. [PubMed] [Google Scholar]
  36. Lukacovic M. F., Feinstein M. B., Sha'afi R. I., Perrie S. Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes. Biochemistry. 1981 May 26;20(11):3145–3151. doi: 10.1021/bi00514a025. [DOI] [PubMed] [Google Scholar]
  37. Lux S. E., John K. M., Kopito R. R., Lodish H. F. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci U S A. 1989 Dec;86(23):9089–9093. doi: 10.1073/pnas.86.23.9089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Maneri L. R., Low P. S. Fatty acid composition of lipids which copurify with band 3. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1012–1019. doi: 10.1016/0006-291x(89)92209-2. [DOI] [PubMed] [Google Scholar]
  39. Margaritis L. H., Elgsaeter A., Branton D. Rotary replication for freeze-etching. J Cell Biol. 1977 Jan;72(1):47–56. doi: 10.1083/jcb.72.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Milthorpe B. K., Jeffrey P. D., Nichol L. W. The direct analysis of sedimentation equilibrium results obtained with polymerizing systems. Biophys Chem. 1975 Apr;3(2):169–176. doi: 10.1016/0301-4622(75)80007-x. [DOI] [PubMed] [Google Scholar]
  41. Moriyama R., Makino S. Interaction of glyceraldehyde-3-phosphate dehydrogenase with the cytoplasmic pole of band 3 from bovine erythrocyte membrane: the mode of association and identification of the binding site of band 3 polypeptide. Arch Biochem Biophys. 1987 Aug 1;256(2):606–617. doi: 10.1016/0003-9861(87)90618-7. [DOI] [PubMed] [Google Scholar]
  42. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mühlebach T., Cherry R. J. Rotational diffusion and self-association of band 3 in reconstituted lipid vesicles. Biochemistry. 1985 Feb 12;24(4):975–983. doi: 10.1021/bi00325a025. [DOI] [PubMed] [Google Scholar]
  44. Nakashima H., Makino S. State of association of band 3 protein from bovine erythrocyte membrane in nonionic detergent. J Biochem. 1980 Oct;88(4):933–937. doi: 10.1093/oxfordjournals.jbchem.a133081. [DOI] [PubMed] [Google Scholar]
  45. Nakashima H., Nakagawa Y., Makino S. Detection of the associated state of membrane proteins by polyacrylamide gradient gel electrophoresis with non-denaturing detergents. Application to band 3 protein from erythrocyte membranes. Biochim Biophys Acta. 1981 May 20;643(3):509–518. doi: 10.1016/0005-2736(81)90348-5. [DOI] [PubMed] [Google Scholar]
  46. Nigg E., Cherry R. J. Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature. 1979 Feb 8;277(5696):493–494. doi: 10.1038/277493a0. [DOI] [PubMed] [Google Scholar]
  47. Nozaki Y., Schechter N. M., Reynolds J. A., Tanford C. Use of gel chromatography for the determination of the Stokes radii of proteins in the presence and absence of detergents. A reexamination. Biochemistry. 1976 Aug 24;15(17):3884–3890. doi: 10.1021/bi00662a036. [DOI] [PubMed] [Google Scholar]
  48. Pappert G., Schubert D. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents. Biochim Biophys Acta. 1983 Apr 21;730(1):32–40. doi: 10.1016/0005-2736(83)90313-9. [DOI] [PubMed] [Google Scholar]
  49. Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  50. Pinder J. C., Pekrun A., Maggs A. M., Brain A. P., Gratzer W. B. Association state of human red blood cell band 3 and its interaction with ankyrin. Blood. 1995 May 15;85(10):2951–2961. [PubMed] [Google Scholar]
  51. Premachandra B. R. Interaction of hemoglobin and its component alpha and beta chains with band 3 protein. Biochemistry. 1986 Jun 3;25(11):3455–3462. doi: 10.1021/bi00359a054. [DOI] [PubMed] [Google Scholar]
  52. Reithmeier R. A. Fragmentation of the band 3 polypeptide from human erythrocyte membranes. Size and detergent binding of the membrane-associated domain. J Biol Chem. 1979 Apr 25;254(8):3054–3060. [PubMed] [Google Scholar]
  53. Roark D. E., Yphantis D. A. Studies of self-associating systems by equilibrium ultracentrifugation. Ann N Y Acad Sci. 1969 Nov 7;164(1):245–278. doi: 10.1111/j.1749-6632.1969.tb14043.x. [DOI] [PubMed] [Google Scholar]
  54. Rogalski A. A., Steck T. L., Waseem A. Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell. J Biol Chem. 1989 Apr 15;264(11):6438–6446. [PubMed] [Google Scholar]
  55. Ruffing W., Gärtner E. M., Lepke S., Legrum B., Passow H. Transport-related conformational states of the band 3 protein: probing with 1-fluoro-2,4-dinitrobenzene. Cell Mol Biol (Noisy-le-grand) 1996 Nov;42(7):1097–1118. [PubMed] [Google Scholar]
  56. Salhany J. M. Allosteric effects in stilbenedisulfonate binding to band 3 protein (AE1). Cell Mol Biol (Noisy-le-grand) 1996 Nov;42(7):1065–1096. [PubMed] [Google Scholar]
  57. Salhany J. M., Cassoly R. Kinetics of p-mercuribenzoate binding to sulfhydryl groups on the isolated cytoplasmic fragment of band 3 protein. Effect of hemoglobin binding on the conformation. J Biol Chem. 1989 Jan 25;264(3):1399–1404. [PubMed] [Google Scholar]
  58. Salhany J. M., Cordes K. A., Sloan R. L. Gel filtration chromatographic studies of the isolated membrane domain of band 3. Mol Membr Biol. 1997 Apr-Jun;14(2):71–79. doi: 10.3109/09687689709068437. [DOI] [PubMed] [Google Scholar]
  59. Salhany J. M., Cordes K. A. The isolated cytoplasmic domain of band 3 binds calcium at physiological salt concentration and neutral PH. Biochem Biophys Res Commun. 1991 Jan 31;174(2):975–982. doi: 10.1016/0006-291x(91)91514-d. [DOI] [PubMed] [Google Scholar]
  60. Sami M., Malik S., Watts A. Structural stability of the erythrocyte anion transporter, band 3, in native membranes and in detergent micelles. Biochim Biophys Acta. 1992 Mar 23;1105(1):148–154. doi: 10.1016/0005-2736(92)90173-j. [DOI] [PubMed] [Google Scholar]
  61. Schopfer L. M., Salhany J. M. Factors determining the conformation and quaternary structure of isolated human erythrocyte band 3 in detergent solution. Biochemistry. 1992 Dec 22;31(50):12610–12617. doi: 10.1021/bi00165a010. [DOI] [PubMed] [Google Scholar]
  62. Schubert D., Boss K., Dorst H. J., Flossdorf J., Pappert G. The nature of the stable noncovalent dimers of band 3 protein from erythrocyte membranes in solutions of Triton X-100. FEBS Lett. 1983 Oct 31;163(1):81–84. doi: 10.1016/0014-5793(83)81168-5. [DOI] [PubMed] [Google Scholar]
  63. Schuck P., Legrum B., Passow H., Schubert D. The influence of two anion-transport inhibitors, 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate and 4,4'-dibenzoylstilbene-2,2'-disulfonate, on the self-association of erythrocyte band 3 protein. Eur J Biochem. 1995 Jun 1;230(2):806–812. doi: 10.1111/j.1432-1033.1995.tb20624.x. [DOI] [PubMed] [Google Scholar]
  64. Schuck P., Schubert D. Band 3-hemoglobin associations. The band 3 tetramer is the oxyhemoglobin binding site. FEBS Lett. 1991 Nov 18;293(1-2):81–84. doi: 10.1016/0014-5793(91)81156-3. [DOI] [PubMed] [Google Scholar]
  65. Steck T. L. Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol. 1972 May 14;66(2):295–305. doi: 10.1016/0022-2836(72)90481-0. [DOI] [PubMed] [Google Scholar]
  66. Strapazon E., Steck T. L. Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry. 1977 Jun 28;16(13):2966–2971. doi: 10.1021/bi00632a025. [DOI] [PubMed] [Google Scholar]
  67. Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tanner M. J. The major integral proteins of the human red cell. Baillieres Clin Haematol. 1993 Jun;6(2):333–356. doi: 10.1016/s0950-3536(05)80149-0. [DOI] [PubMed] [Google Scholar]
  69. Thevenin B. J., Low P. S. Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. J Biol Chem. 1990 Sep 25;265(27):16166–16172. [PubMed] [Google Scholar]
  70. Thevenin B. J., Periasamy N., Shohet S. B., Verkman A. S. Segmental dynamics of the cytoplasmic domain of erythrocyte band 3 determined by time-resolved fluorescence anisotropy: sensitivity to pH and ligand binding. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1741–1745. doi: 10.1073/pnas.91.5.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tu Y. P., Xu H. Zn2+ inhibits the anion transport activity of band 3 by binding to its cytoplasmic tail. Biosci Rep. 1994 Aug;14(4):159–169. doi: 10.1007/BF01200245. [DOI] [PubMed] [Google Scholar]
  72. Tu Y. P., Yang F. Y. Zn(2+)-mediated domain-domain communication in human erythrocyte band 3. J Biochem. 1995 Jul;118(1):161–167. doi: 10.1093/oxfordjournals.jbchem.a124872. [DOI] [PubMed] [Google Scholar]
  73. Turrini F., Arese P., Yuan J., Low P. S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem. 1991 Dec 15;266(35):23611–23617. [PubMed] [Google Scholar]
  74. Van Dort H. M., Moriyama R., Low P. S. Effect of band 3 subunit equilibrium on the kinetics and affinity of ankyrin binding to erythrocyte membrane vesicles. J Biol Chem. 1998 Jun 12;273(24):14819–14826. doi: 10.1074/jbc.273.24.14819. [DOI] [PubMed] [Google Scholar]
  75. Vince J. W., Sarabia V. E., Reithmeier R. A. Self-association of Band 3, the human erythrocyte anion exchanger, in detergent solution. Biochim Biophys Acta. 1997 Jun 12;1326(2):295–306. doi: 10.1016/s0005-2736(97)00033-3. [DOI] [PubMed] [Google Scholar]
  76. Walder J. A., Chatterjee R., Steck T. L., Low P. S., Musso G. F., Kaiser E. T., Rogers P. H., Arnone A. The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J Biol Chem. 1984 Aug 25;259(16):10238–10246. [PubMed] [Google Scholar]
  77. Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Wang K., Richards F. M. An approach to nearest neighbor analysis of membrane proteins. Application to the human erythrocyte membrane of a method employing cleavable cross-linkages. J Biol Chem. 1974 Dec 25;249(24):8005–8018. [PubMed] [Google Scholar]
  79. Werner P. K., Reithmeier R. A. Molecular characterization of the human erythrocyte anion transport protein in octyl glucoside. Biochemistry. 1985 Nov 5;24(23):6375–6381. doi: 10.1021/bi00344a009. [DOI] [PubMed] [Google Scholar]
  80. Wong P. The state of association of Band 3 of the human erythrocyte membrane: evidence of a hexamer. Biochim Biophys Acta. 1993 Sep 5;1151(1):21–27. doi: 10.1016/0005-2736(93)90066-9. [DOI] [PubMed] [Google Scholar]
  81. Yedgar S., Barenholz Y., Cooper V. G. Molecular weight, shape and structure of mixed micelles of Triton X-100 and sphingomyelin. Biochim Biophys Acta. 1974 Aug 21;363(1):98–111. doi: 10.1016/0005-2736(74)90009-1. [DOI] [PubMed] [Google Scholar]
  82. von Rückmann B., Jöns T., Dölle F., Drenckhahn D., Schubert D. Cytoskeleton-membrane connections in the human erythrocyte membrane: band 4.1 binds to tetrameric band 3 protein. Biochim Biophys Acta. 1997 Apr 26;1325(2):226–234. doi: 10.1016/s0005-2736(96)00261-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES