Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2142–2157. doi: 10.1016/S0006-3495(99)77369-8

A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers.

J Huang 1, G W Feigenson 1
PMCID: PMC1300186  PMID: 10096908

Abstract

We recently reported the equilibrium maximum solubility of cholesterol in a lipid bilayer, chi*chol, to be 0.66 in four different phosphatidylcholines, and 0.51 in a phosphatidylethanolamine (Huang, J.,J.T. Buboltz, and G. W. Feigenson. 1999. Biochim. Biophys. Acta. in press). Here we present a model of cholesterol-phospholipid mixing that explains these observed values of chi*chol. Monte Carlo simulations show that pairwise-additivity of nearest-neighbor interactions is inadequate to describe all the chi*chol values. Instead, if cholesterol multibody interactions are assigned highly unfavorable energy, then jumps occur in cholesterol chemical potential that lead to its precipitation from the bilayer. Cholesterol precipitation is most likely to occur near three discrete values of cholesterol mole fraction, 0.50, 0.57, and 0.67, which correspond to cholesterol/phospholipid mole ratios of 1/1, 4/3, and 2/1, respectively. At these solubility limits, where cholesterol chemical potential jumps, the cholesterol-phospholipid bilayer mixture forms highly regular lipid distributions in order to minimize cholesterol-cholesterol contacts. This treatment shows that dramatic structural and thermodynamic changes can occur at particular cholesterol mole fractions without any stoichiometric complex formation. The physical origin of the unfavorable cholesterol multibody interaction is explained by an "umbrella model": in a bilayer, nonpolar cholesterol relies on polar phospholipid headgroup coverage to avoid the unfavorable free energy of cholesterol contact with water. Thus, at high cholesterol mole fraction, this unfavorable free energy, not any favorable cholesterol-phospholipid interaction, dominates the mixing behavior. This physical origin also explains the "cholesterol condensing effect" and the increase in acyl chain order parameter in cholesterol-phospholipid mixtures.

Full Text

The Full Text of this article is available as a PDF (468.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caffrey M., Feigenson G. W. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry. 1981 Mar 31;20(7):1949–1961. doi: 10.1021/bi00510a034. [DOI] [PubMed] [Google Scholar]
  2. Chong P. L. Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10069–10073. doi: 10.1073/pnas.91.21.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chong P. L., Tang D., Sugar I. P. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Biophys J. 1994 Jun;66(6):2029–2038. doi: 10.1016/S0006-3495(94)80996-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cruzeiro-Hansson L., Ipsen J. H., Mouritsen O. G. Intrinsic molecules in lipid membranes change the lipid-domain interfacial area: cholesterol at domain interfaces. Biochim Biophys Acta. 1989 Feb 27;979(2):166–176. doi: 10.1016/0005-2736(89)90432-x. [DOI] [PubMed] [Google Scholar]
  5. Drouffe J. M., Maggs A. C., Leibler S. Computer simulations of self-assembled membranes. Science. 1991 Nov 29;254(5036):1353–1356. doi: 10.1126/science.1962193. [DOI] [PubMed] [Google Scholar]
  6. Fattal D. R., Ben-Shaul A. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J. 1993 Nov;65(5):1795–1809. doi: 10.1016/S0006-3495(93)81249-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gershfeld N. L. Equilibrium studies of lecithin-cholesterol interactions I. Stoichiometry of lecithin-cholesterol complexes in bulk systems. Biophys J. 1978 Jun;22(3):469–488. doi: 10.1016/S0006-3495(78)85500-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horwitz C., Krut L., Kaminsky L. Cholesterol uptake by egg-yolk phosphatidylcholine. Biochim Biophys Acta. 1971 Jul 13;239(2):329–336. doi: 10.1016/0005-2760(71)90178-0. [DOI] [PubMed] [Google Scholar]
  9. Huang J., Feigenson G. W. Monte Carlo simulation of lipid mixtures: finding phase separation. Biophys J. 1993 Nov;65(5):1788–1794. doi: 10.1016/S0006-3495(93)81234-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang J., Swanson J. E., Dibble A. R., Hinderliter A. K., Feigenson G. W. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase. Biophys J. 1993 Feb;64(2):413–425. doi: 10.1016/S0006-3495(93)81382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jørgensen K., Mouritsen O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J. 1995 Sep;69(3):942–954. doi: 10.1016/S0006-3495(95)79968-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. King M. D., Marsh D. Head group and chain length dependence of phospholipid self-assembly studied by spin-label electron spin resonance. Biochemistry. 1987 Mar 10;26(5):1224–1231. doi: 10.1021/bi00379a004. [DOI] [PubMed] [Google Scholar]
  13. Kinsky S. C., Luse S. A., Zopf D., van Deenen L. L., Haxby J. Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim Biophys Acta. 1967;135(5):844–861. doi: 10.1016/0005-2736(67)90055-7. [DOI] [PubMed] [Google Scholar]
  14. Levy R. M., Gallicchio E. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Annu Rev Phys Chem. 1998;49:531–567. doi: 10.1146/annurev.physchem.49.1.531. [DOI] [PubMed] [Google Scholar]
  15. Liu F., Sugar I. P., Chong P. L. Cholesterol and ergosterol superlattices in three-component liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence. Biophys J. 1997 May;72(5):2243–2254. doi: 10.1016/S0006-3495(97)78868-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  18. Scott H. L. Lipid-cholesterol interactions. Monte Carlo simulations and theory. Biophys J. 1991 Feb;59(2):445–455. doi: 10.1016/S0006-3495(91)82238-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Somerharju P. J., Virtanen J. A., Eklund K. K., Vainio P., Kinnunen P. K. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry. 1985 May 21;24(11):2773–2781. doi: 10.1021/bi00332a027. [DOI] [PubMed] [Google Scholar]
  20. Stockton G. W., Smith I. C. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids. 1976 Oct;17(2-3):251–263. doi: 10.1016/0009-3084(76)90070-0. [DOI] [PubMed] [Google Scholar]
  21. Tang D., Chong P. L. E/M dips. Evidence for lipids regularly distributed into hexagonal super-lattices in pyrene-PC/DMPC binary mixtures at specific concentrations. Biophys J. 1992 Oct;63(4):903–910. doi: 10.1016/S0006-3495(92)81672-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Virtanen J. A., Ruonala M., Vauhkonen M., Somerharju P. Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry. 1995 Sep 12;34(36):11568–11581. doi: 10.1021/bi00036a033. [DOI] [PubMed] [Google Scholar]
  23. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  24. Wilkinson D. A., Nagle J. F. Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry. 1981 Jan 6;20(1):187–192. doi: 10.1021/bi00504a031. [DOI] [PubMed] [Google Scholar]
  25. Zhang Z., Sperotto M. M., Zuckermann M. J., Mouritsen O. G. A microscopic model for lipid/protein bilayers with critical mixing. Biochim Biophys Acta. 1993 Apr 8;1147(1):154–160. doi: 10.1016/0005-2736(93)90326-u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES