Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2177–2182. doi: 10.1016/S0006-3495(99)77372-8

Structural analysis of DNA-chlorophyll complexes by Fourier transform infrared difference spectroscopy.

J F Neault 1, H A Tajmir-Riahi 1
PMCID: PMC1300189  PMID: 10096911

Abstract

Porphyrins and metalloporphyrins are strong DNA binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. This study was designed to examine the interaction of calf thymus DNA with chlorophyll a (CHL) in aqueous solution at physiological pH with CHL/DNA(phosphate) ratios (r) of 1/160, 1/80, 1/40, 1/20, 1/10, and 1/5. Fourier transform infrared (FTIR) difference spectroscopy was used to characterize the nature of DNA-pigment interactions and to establish correlations between spectral changes and the CHL binding mode, binding constant, sequence selectivity, DNA secondary structure, and structural variations of DNA-CHL complexes in aqueous solution. Spectroscopic results showed that CHL is an external DNA binder with no affinity for DNA intercalation. At low pigment concentration (r = 1/160, 1/80, and 1/40), there are two major binding sites for CHL on DNA duplex: 1) Mg-PO2 and 2) Mg-N7 (guanine) with an overall binding constant of K = 1.13 x 10(4) M-1. The pigment distributions are 60% with the backbone PO2 group and 20% with the G-C base pairs. The chlorophyll interaction is associated with a major reduction of B-DNA structure in favor of A-DNA. At high chlorophyll content (r = 1/10), helix opening occurs, with major spectral alterations of the G-C and A-T bases. At high chlorophyll concentration (1/5), pigment aggregation is observed, which does not favor CHL-DNA complexation.

Full Text

The Full Text of this article is available as a PDF (152.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Tajmir-Riahi H. A., Carpentier R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett. 1995 Apr 17;363(1-2):65–68. doi: 10.1016/0014-5793(95)00282-e. [DOI] [PubMed] [Google Scholar]
  2. Anantha N. V., Azam M., Sheardy R. D. Porphyrin binding to quadrupled T4G4. Biochemistry. 1998 Mar 3;37(9):2709–2714. doi: 10.1021/bi973009v. [DOI] [PubMed] [Google Scholar]
  3. Arimoto S., Negishi T., Hayatsu H. Inhibitory effect of hemin on the mutagenic activities of carcinogens. Cancer Lett. 1980 Nov;11(1):29–33. doi: 10.1016/0304-3835(80)90125-1. [DOI] [PubMed] [Google Scholar]
  4. Breinholt V., Hendricks J., Pereira C., Arbogast D., Bailey G. Dietary chlorophyllin is a potent inhibitor of aflatoxin B1 hepatocarcinogenesis in rainbow trout. Cancer Res. 1995 Jan 1;55(1):57–62. [PubMed] [Google Scholar]
  5. Danchin A. tRNA structure and binding sites for cations. Biopolymers. 1972;11(7):1317–1333. doi: 10.1002/bip.1972.360110702. [DOI] [PubMed] [Google Scholar]
  6. Dashwood R. H., Breinholt V., Bailey G. S. Chemopreventive properties of chlorophyllin: inhibition of aflatoxin B1 (AFB1)-DNA binding in vivo and anti-mutagenic activity against AFB1 and two heterocyclic amines in the Salmonella mutagenicity assay. Carcinogenesis. 1991 May;12(5):939–942. doi: 10.1093/carcin/12.5.939. [DOI] [PubMed] [Google Scholar]
  7. Dashwood R. H. Protection by chlorophyllin against the covalent binding of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to rat liver DNA. Carcinogenesis. 1992 Jan;13(1):113–118. doi: 10.1093/carcin/13.1.113. [DOI] [PubMed] [Google Scholar]
  8. DiRico D. E., Jr, Keller P. B., Hartman K. A. The infrared spectrum and structure of the type I complex of silver and DNA. Nucleic Acids Res. 1985 Jan 11;13(1):251–260. doi: 10.1093/nar/13.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doll R. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc. 1990 Jul;49(2):119–131. doi: 10.1079/pns19900018. [DOI] [PubMed] [Google Scholar]
  10. Doll R., Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed] [Google Scholar]
  11. Dragsted L. O., Strube M., Larsen J. C. Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol. 1993;72 (Suppl 1):116–135. doi: 10.1111/j.1600-0773.1993.tb01679.x. [DOI] [PubMed] [Google Scholar]
  12. Eichhorn G. L., Shin Y. A. Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity. J Am Chem Soc. 1968 Dec 18;90(26):7323–7328. doi: 10.1021/ja01028a024. [DOI] [PubMed] [Google Scholar]
  13. Farber E. Chemical carcinogenesis: a biologic perspective. Am J Pathol. 1982 Feb;106(2):271–296. [PMC free article] [PubMed] [Google Scholar]
  14. Gessner R. V., Quigley G. J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations. Biochemistry. 1985 Jan 15;24(2):237–240. doi: 10.1021/bi00323a001. [DOI] [PubMed] [Google Scholar]
  15. HARRISSON J. W., LEVIN S. E., TRABIN B. The safety and fate of potassium sodium copper chlorophyllin and other copper compounds. J Am Pharm Assoc Am Pharm Assoc. 1954 Dec;43(12):722–737. doi: 10.1002/jps.3030431206. [DOI] [PubMed] [Google Scholar]
  16. Hayatsu H., Arimoto S., Negishi T. Dietary inhibitors of mutagenesis and carcinogenesis. Mutat Res. 1988 Dec;202(2):429–446. doi: 10.1016/0027-5107(88)90204-7. [DOI] [PubMed] [Google Scholar]
  17. Hill B. T. Interactions between antitumour agents and radiation and the expression of resistance. Cancer Treat Rev. 1991 Sep;18(3):149–190. doi: 10.1016/0305-7372(91)90006-l. [DOI] [PubMed] [Google Scholar]
  18. Izatt R. M., Christensen J. J., Rytting J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev. 1971 Oct;71(5):439–481. doi: 10.1021/cr60273a002. [DOI] [PubMed] [Google Scholar]
  19. Kelly J. M., Murphy M. J., McConnell D. J., OhUigin C. A comparative study of the interaction of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation. Nucleic Acids Res. 1985 Jan 11;13(1):167–184. doi: 10.1093/nar/13.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Langlais M., Tajmir-Riahi H. A., Savoie R. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: binding sites and conformational changes. Biopolymers. 1990;30(7-8):743–752. doi: 10.1002/bip.360300709. [DOI] [PubMed] [Google Scholar]
  21. Lipscomb L. A., Zhou F. X., Presnell S. R., Woo R. J., Peek M. E., Plaskon R. R., Williams L. D. Structure of DNA-porphyrin complex. Biochemistry. 1996 Mar 5;35(9):2818–2823. doi: 10.1021/bi952443z. [DOI] [PubMed] [Google Scholar]
  22. Loprete D. M., Hartman K. A. Conditions for the stability of the B, C, and Z structural forms of poly(dG-dC) in the presence of lithium, potassium, magnesium, calcium, and zinc cations. Biochemistry. 1993 Apr 20;32(15):4077–4082. doi: 10.1021/bi00066a032. [DOI] [PubMed] [Google Scholar]
  23. Müller W., Crothers D. M. Interactions of heteroaromatic compounds with nucleic acids. 1. The influence of heteroatoms and polarizability on the base specificity of intercalating ligands. Eur J Biochem. 1975 May;54(1):267–277. doi: 10.1111/j.1432-1033.1975.tb04137.x. [DOI] [PubMed] [Google Scholar]
  24. Neault J. F., Naoui M., Manfait M., Tajmir-Riahi H. A. Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy. FEBS Lett. 1996 Mar 11;382(1-2):26–30. doi: 10.1016/0014-5793(96)00093-2. [DOI] [PubMed] [Google Scholar]
  25. Neault J. F., Naoui M., Tajmir-Riahi H. A. DNA-drug interaction. The effects of vitamin C on the solution structure of Calf-thymus DNA studied by FTIR and laser Raman difference spectroscopy. J Biomol Struct Dyn. 1995 Oct;13(2):387–397. doi: 10.1080/07391102.1995.10508847. [DOI] [PubMed] [Google Scholar]
  26. Neault J. F., Tajmir-Riahi H. A. Diethylstilbestrol-DNA interaction studied by Fourier transform infrared and Raman spectroscopy. J Biol Chem. 1996 Apr 5;271(14):8140–8143. doi: 10.1074/jbc.271.14.8140. [DOI] [PubMed] [Google Scholar]
  27. Neault J. F., Tajmir-Riahi H. A. RNA-diethylstilbestrol interaction studied by Fourier transform infrared difference spectroscopy. J Biol Chem. 1997 Apr 4;272(14):8901–8904. doi: 10.1074/jbc.272.14.8901. [DOI] [PubMed] [Google Scholar]
  28. Newmark H. L. A hypothesis for dietary components as blocking agents of chemical carcinogenesis: plant phenolics and pyrrole pigments. Nutr Cancer. 1984;6(1):58–70. doi: 10.1080/01635588509513807. [DOI] [PubMed] [Google Scholar]
  29. Ong T. M., Whong W. Z., Stewart J., Brockman H. E. Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures. Mutat Res. 1986 Feb;173(2):111–115. doi: 10.1016/0165-7992(86)90086-2. [DOI] [PubMed] [Google Scholar]
  30. Pasternack R. F., Garrity P., Ehrlich B., Davis C. B., Gibbs E. J., Orloff G., Giartosio A., Turano C. The influence of ionic strength on the binding of a water soluble porphyrin to nucleic acids. Nucleic Acids Res. 1986 Jul 25;14(14):5919–5931. doi: 10.1093/nar/14.14.5919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 May 10;22(10):2406–2414. doi: 10.1021/bi00279a016. [DOI] [PubMed] [Google Scholar]
  32. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 Nov 8;22(23):5409–5417. doi: 10.1021/bi00292a024. [DOI] [PubMed] [Google Scholar]
  33. Prescott B., Steinmetz W., Thomas G. J., Jr Characterization of DNA structures by laser Raman spectroscopy. Biopolymers. 1984 Feb;23(2):235–256. doi: 10.1002/bip.360230206. [DOI] [PubMed] [Google Scholar]
  34. Romert L., Curvall M., Jenssen D. Chlorophyllin is both a positive and negative modifier of mutagenicity. Mutagenesis. 1992 Sep;7(5):349–355. doi: 10.1093/mutage/7.5.349. [DOI] [PubMed] [Google Scholar]
  35. Sari M. A., Battioni J. P., Dupré D., Mansuy D., Le Pecq J. B. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry. 1990 May 1;29(17):4205–4215. doi: 10.1021/bi00469a025. [DOI] [PubMed] [Google Scholar]
  36. Tajmir-Riahi H. A., Ahmad R., Naoui M., Diamantoglou S. The effect of HCl on the solution structure of calf thymus DNA: a comparative study of DNA denaturation by proton and metal cations using Fourier transform IR difference spectroscopy. Biopolymers. 1995 May;35(5):493–501. doi: 10.1002/bip.360350508. [DOI] [PubMed] [Google Scholar]
  37. Tajmir-Riahi H. A. Interaction of adenylic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. Evidence for the sugar C'2-endo/anti, C'3-endo/anti and C'4-exon/anti conformational changes. Biochim Biophys Acta. 1990 Sep 10;1087(1):49–54. doi: 10.1016/0167-4781(90)90119-m. [DOI] [PubMed] [Google Scholar]
  38. Tajmir-Riahi H. A. Interaction of deoxyguanylic acid with alkaline earth metal ions. Evidence for the deoxyribose C3'-endo/anti, O4'-endo/anti and C2'-endo/anti conformational transitions. J Biomol Struct Dyn. 1990 Oct;8(2):303–313. doi: 10.1080/07391102.1990.10507807. [DOI] [PubMed] [Google Scholar]
  39. Tajmir-Riahi H. A. Interaction of guanylic acid with the Mg(II), Ca(II), Sr(II), and Ba(II) ions in the crystalline solid and aqueous solution: evidence for the ribose C2'-endo/anti and C3'-endo/anti conformational changes. Biopolymers. 1991 Jan;31(1):101–108. doi: 10.1002/bip.360310109. [DOI] [PubMed] [Google Scholar]
  40. Tajmir-Riahi H. A., Langlais M., Savoie R. A laser Raman spectroscopic study of the interaction of the methylmercury cation with AMP, ADP and ATP. Biochim Biophys Acta. 1988 Oct 12;956(3):211–216. doi: 10.1016/0167-4838(88)90137-9. [DOI] [PubMed] [Google Scholar]
  41. Tajmir-Riahi H. A., Neault J. F., Naoui M. Does DNA acid fixation produce left-handed Z structure? FEBS Lett. 1995 Aug 14;370(1-2):105–108. doi: 10.1016/0014-5793(95)00802-g. [DOI] [PubMed] [Google Scholar]
  42. Wheeler G. V., Chinsky L., Miskovsky P., Turpin P. Y. The interaction of copper tetrakis(4-N-methylpyridyl) porphine with polynucleotides studied by ultraviolet resonance Raman spectroscopy. J Biomol Struct Dyn. 1995 Oct;13(2):399–412. doi: 10.1080/07391102.1995.10508848. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES