Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2460–2471. doi: 10.1016/S0006-3495(99)77401-1

A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.

R G Efremov 1, D E Nolde 1, G Vergoten 1, A S Arseniev 1
PMCID: PMC1300218  PMID: 10233063

Abstract

We describe application of the implicit solvation model (see the first paper of this series), to Monte Carlo simulations of several peptides in bilayer- and water-mimetic environments, and in vacuum. The membrane-bound peptides chosen were transmembrane segments A and B of bacteriorhodopsin, the hydrophobic segment of surfactant lipoprotein, and magainin2. Their conformations in membrane-like media are known from the experiments. Also, molecular dynamics study of surfactant lipoprotein with different explicit solvents has been reported (Kovacs, H., A. E. Mark, J. Johansson, and W. F. van Gunsteren. 1995. J. Mol. Biol. 247:808-822). The principal goal of this work is to compare the results obtained in the framework of our solvation model with available experimental and computational data. The findings could be summarized as follows: 1) structural and energetic properties of studied molecules strongly depend on the solvent; membrane-mimetic media significantly promote formation of alpha-helices capable of traversing the bilayer, whereas a polar environment destabilizes alpha-helical conformation via reduction of solvent-exposed surface area and packing; 2) the structures calculated in a membrane-like environment agree with the experimental ones; 3) noticeable differences in conformation of surfactant lipoprotein assessed via Monte Carlo simulation with implicit solvent (this work) and molecular dynamics in explicit solvent were observed; 4) in vacuo simulations do not correctly reproduce protein-membrane interactions, and hence should be avoided in modeling membrane proteins.

Full Text

The Full Text of this article is available as a PDF (265.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Kim Y., Chirlian L. E., Gesell J., Neumann J. M., Montal M., Tomich J., Zasloff M., Opella S. J. Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR. 1991 Jul;1(2):167–173. doi: 10.1007/BF01877228. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997 Apr 1;156(3):197–211. doi: 10.1007/s002329900201. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Deber C. M., Goto N. K. Folding proteins into membranes. Nat Struct Biol. 1996 Oct;3(10):815–818. doi: 10.1038/nsb1096-815. [DOI] [PubMed] [Google Scholar]
  5. Ducarme P., Rahman M., Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins. 1998 Mar 1;30(4):357–371. [PubMed] [Google Scholar]
  6. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  7. Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
  8. Johansson J., Szyperski T., Wüthrich K. Pulmonary surfactant-associated polypeptide SP-C in lipid micelles: CD studies of intact SP-C and NMR secondary structure determination of depalmitoyl-SP-C(1-17). FEBS Lett. 1995 Apr 10;362(3):261–265. doi: 10.1016/0014-5793(95)00216-v. [DOI] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Kelly J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol. 1998 Feb;8(1):101–106. doi: 10.1016/s0959-440x(98)80016-x. [DOI] [PubMed] [Google Scholar]
  11. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  12. Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
  13. Lomize A. L., Pervushin K. V., Arseniev A. S. Spatial structure of (34-65)bacterioopsin polypeptide in SDS micelles determined from nuclear magnetic resonance data. J Biomol NMR. 1992 Jul;2(4):361–372. doi: 10.1007/BF01874814. [DOI] [PubMed] [Google Scholar]
  14. Lyu P. C., Sherman J. C., Chen A., Kallenbach N. R. Alpha-helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5317–5320. doi: 10.1073/pnas.88.12.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mihara H., Takahashi Y. Engineering peptides and proteins that undergo alpha-to-beta transitions. Curr Opin Struct Biol. 1997 Aug;7(4):501–508. doi: 10.1016/s0959-440x(97)80113-3. [DOI] [PubMed] [Google Scholar]
  16. Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
  17. Pervushin K. V., Arseniev A. S. Three-dimensional structure of (1-36)bacterioopsin in methanol-chloroform mixture and SDS micelles determined by 2D 1H-NMR spectroscopy. FEBS Lett. 1992 Aug 17;308(2):190–196. doi: 10.1016/0014-5793(92)81272-n. [DOI] [PubMed] [Google Scholar]
  18. Samatey F. A., Xu C., Popot J. L. On the distribution of amino acid residues in transmembrane alpha-helix bundles. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4577–4581. doi: 10.1073/pnas.92.10.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995 Nov;20(11):460–464. doi: 10.1016/s0968-0004(00)89101-x. [DOI] [PubMed] [Google Scholar]
  20. Tobias D. J., Brooks C. L., 3rd Thermodynamics and mechanism of alpha helix initiation in alanine and valine peptides. Biochemistry. 1991 Jun 18;30(24):6059–6070. doi: 10.1021/bi00238a033. [DOI] [PubMed] [Google Scholar]
  21. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES