Abstract
Binding isotherms have been determined for the association of horse heart cytochrome c with dioleoyl phosphatidylglycerol (DOPG)/dioleoyl phosphatidylcholine (DOPC) bilayer membranes over a range of lipid compositions and ionic strengths. In the absence of protein, the DOPG and DOPC lipids mix nearly ideally. The binding isotherms have been analyzed using double layer theory to account for the electrostatics, either the Van der Waals or scaled particle theory equation of state to describe the protein surface distribution, and a statistical thermodynamic formulation consistent with the mass-action law to describe the lipid distribution. Basic parameters governing the electrostatics and intrinsic binding are established from the binding to membranes composed of anionic lipid (DOPG) alone. Both the Van der Waals and scaled particle equations of state can describe the effects of protein distribution on the DOPG binding isotherms equally well, but with different values of the maximum binding stoichiometry (13 lipids/protein for Van der Waals and 8 lipids/protein for scaled particle theory). With these parameters set, it is then possible to derive the association constant, Kr, of DOPG relative to DOPC for surface association with bound cytochrome c by using the binding isotherms obtained with the mixed lipid membranes. A value of Kr (DOPG:DOPC) = 3.3-4.8, depending on the lipid stoichiometry, is determined that consistently describes the binding at different lipid compositions and different ionic strengths. Using the value of Kr obtained it is possible to derive the average in-plane lipid distribution and the enhancement in protein binding induced by lipid redistribution using the statistical thermodynamic theory.
Full Text
The Full Text of this article is available as a PDF (153.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brotherus J. R., Griffith O. H., Brotherus M. O., Jost P. C., Silvius J. R., Hokin L. E. Lipid--protein multiple binding equilibria in membranes. Biochemistry. 1981 Sep 1;20(18):5261–5267. doi: 10.1021/bi00521a026. [DOI] [PubMed] [Google Scholar]
- Carbone M. A., Macdonald P. M. Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: (31)P and (2)H NMR spectroscopic evidence. Biochemistry. 1996 Mar 19;35(11):3368–3378. doi: 10.1021/bi952349i. [DOI] [PubMed] [Google Scholar]
- Chatelier R. C., Minton A. P. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996 Nov;71(5):2367–2374. doi: 10.1016/S0006-3495(96)79430-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutsforth G. A., Whitaker R. N., Hermans J., Lentz B. R. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins. Biochemistry. 1989 Sep 5;28(18):7453–7461. doi: 10.1021/bi00444a045. [DOI] [PubMed] [Google Scholar]
- Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
- Findlay E. J., Barton P. G. Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry. 1978 Jun 13;17(12):2400–2405. doi: 10.1021/bi00605a023. [DOI] [PubMed] [Google Scholar]
- Gawrisch K., Barry J. A., Holte L. L., Sinnwell T., Bergelson L. D., Ferretti J. A. Role of interactions at the lipid-water interface for domain formation. Mol Membr Biol. 1995 Jan-Mar;12(1):83–88. doi: 10.3109/09687689509038500. [DOI] [PubMed] [Google Scholar]
- Haverstick D. M., Glaser M. Influence of proteins on the reorganization of phospholipid bilayers into large domains. Biophys J. 1989 Apr;55(4):677–682. doi: 10.1016/S0006-3495(89)82866-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimburg T., Marsh D. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes. Biophys J. 1995 Feb;68(2):536–546. doi: 10.1016/S0006-3495(95)80215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jähnig F. Electrostatic free energy and shift of the phase transition for charged lipid membranes. Biophys Chem. 1976 Jul;4(4):309–318. doi: 10.1016/0301-4622(76)80012-9. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt J. H., Marsh D. Spin-label electron spin resonance studies on the interactions of lysine peptides with phospholipid membranes. Biophys J. 1997 Nov;73(5):2546–2555. doi: 10.1016/S0006-3495(97)78283-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry. 1992 Feb 18;31(6):1767–1773. doi: 10.1021/bi00121a026. [DOI] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Electrostatics and reduction of dimensionality produce apparent cooperativity when basic peptides bind to acidic lipids in membranes. Biochim Biophys Acta. 1992 Mar 23;1105(1):185–187. doi: 10.1016/0005-2736(92)90178-o. [DOI] [PubMed] [Google Scholar]
- Mosior M., Newton A. C. Mechanism of interaction of protein kinase C with phorbol esters. Reversibility and nature of membrane association. J Biol Chem. 1995 Oct 27;270(43):25526–25533. doi: 10.1074/jbc.270.43.25526. [DOI] [PubMed] [Google Scholar]
- Pinheiro T. J., Watts A. Resolution of individual lipids in mixed phospholipid membranes and specific lipid-cytochrome c interactions by magic-angle spinning solid-state phosphorus-31 NMR. Biochemistry. 1994 Mar 8;33(9):2459–2467. doi: 10.1021/bi00175a014. [DOI] [PubMed] [Google Scholar]
- Rodgers W., Glaser M. Characterization of lipid domains in erythrocyte membranes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1364–1368. doi: 10.1073/pnas.88.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux M., Neumann J. M., Bloom M., Devaux P. F. 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur Biophys J. 1988;16(5):267–273. doi: 10.1007/BF00254062. [DOI] [PubMed] [Google Scholar]
- Sankaram M. B., Brophy P. J., Marsh D. Selectivity of interaction of phospholipids with bovine spinal cord myelin basic protein studied by spin-label electron spin resonance. Biochemistry. 1989 Dec 12;28(25):9699–9707. doi: 10.1021/bi00451a024. [DOI] [PubMed] [Google Scholar]
- Yang L., Glaser M. Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry. 1995 Feb 7;34(5):1500–1506. doi: 10.1021/bi00005a005. [DOI] [PubMed] [Google Scholar]