Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jun;76(6):3031–3043. doi: 10.1016/S0006-3495(99)77456-4

Steric effects on multivalent ligand-receptor binding: exclusion of ligand sites by bound cell surface receptors.

W S Hlavacek 1, R G Posner 1, A S Perelson 1
PMCID: PMC1300273  PMID: 10354429

Abstract

Steric effects can influence the binding of a cell surface receptor to a multivalent ligand. To account for steric effects arising from the size of a receptor and from the spacing of binding sites on a ligand, we extend a standard mathematical model for ligand-receptor interactions by introducing a steric hindrance factor. This factor gives the fraction of unbound ligand sites that are accessible to receptors, and thus available for binding, as a function of ligand site occupancy. We derive expressions for the steric hindrance factor for various cases in which the receptor covers a compact region on the ligand surface and the ligand expresses sites that are distributed regularly or randomly in one or two dimensions. These expressions are relevant for ligands such as linear polymers, proteins, and viruses. We also present numerical algorithms that can be used to calculate steric hindrance factors for other cases. These theoretical results allow us to quantify the effects of steric hindrance on ligand-receptor kinetics and equilibria.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badcoe I. G. A fast algorithm for counting the arrangements for packing identical items on a one-dimensional grid with application in DNA-protein and similar interactions. Comput Appl Biosci. 1992 Aug;8(4):323–330. doi: 10.1093/bioinformatics/8.4.323. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton D. R., Woof J. M. Human antibody effector function. Adv Immunol. 1992;51:1–84. doi: 10.1016/s0065-2776(08)60486-1. [DOI] [PubMed] [Google Scholar]
  4. Chatelier R. C., Minton A. P. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996 Nov;71(5):2367–2374. doi: 10.1016/S0006-3495(96)79430-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cowan R., Underwood P. A. Steric effects in antibody reactions with polyvalent antigen. J Theor Biol. 1988 Jun 7;132(3):319–335. doi: 10.1016/s0022-5193(88)80218-2. [DOI] [PubMed] [Google Scholar]
  6. Davies D. R., Cohen G. H. Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):7–12. doi: 10.1073/pnas.93.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLisi C., Wiegel F. W. Effect of nonspecific forces and finite receptor number on rate constants of ligand--cell bound-receptor interactions. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5569–5572. doi: 10.1073/pnas.78.9.5569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dembo M., Goldstein B. Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J Immunol. 1978 Jul;121(1):345–353. [PubMed] [Google Scholar]
  9. Di Cera E., Kong Y. Theory of multivalent binding in one and two-dimensional lattices. Biophys Chem. 1996 Oct 30;61(2-3):107–124. doi: 10.1016/s0301-4622(96)02178-3. [DOI] [PubMed] [Google Scholar]
  10. Dintzis H. M., Dintzis R. Z., Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3671–3675. doi: 10.1073/pnas.73.10.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dintzis R. Z., Middleton M. H., Dintzis H. M. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol. 1983 Nov;131(5):2196–2203. [PubMed] [Google Scholar]
  12. Dower S. K., DeLisi C., Titus J. A., Segal D. M. Mechanism of binding of multivalent immune complexes to Fc receptors. 1. Equilibrium binding. Biochemistry. 1981 Oct 27;20(22):6326–6334. doi: 10.1021/bi00525a007. [DOI] [PubMed] [Google Scholar]
  13. Dower S. K., Segal D. M. C1q binding to antibody-coated cells: predictions from a simple multivalent binding model. Mol Immunol. 1981 Sep;18(9):823–829. doi: 10.1016/0161-5890(81)90004-3. [DOI] [PubMed] [Google Scholar]
  14. Epstein I. R. Cooperative and non-cooperative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions. Biophys Chem. 1978 Sep;8(4):327–339. doi: 10.1016/0301-4622(78)80015-5. [DOI] [PubMed] [Google Scholar]
  15. Epstein I. R. Kinetics of nucleic acid-large ligand interactions: exact Monte Carlo treatment and limiting cases of reversible binding. Biopolymers. 1979 Aug;18(8):2037–2050. doi: 10.1002/bip.1979.360180815. [DOI] [PubMed] [Google Scholar]
  16. Fewtrell C., Metzger H. Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J Immunol. 1980 Aug;125(2):701–710. [PubMed] [Google Scholar]
  17. Fry M. J., Panayotou G., Booker G. W., Waterfield M. D. New insights into protein-tyrosine kinase receptor signaling complexes. Protein Sci. 1993 Nov;2(11):1785–1797. doi: 10.1002/pro.5560021102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gandolfi A., Giovenco M. A. Reversible binding of multivalent antigen in the control of B lymphocyte activation. J Theor Biol. 1978 Oct 21;74(4):513–521. doi: 10.1016/0022-5193(78)90238-2. [DOI] [PubMed] [Google Scholar]
  19. Glaudemans C. P., Bhattacharjee A. K., Manjula B. N. Monoclonal anti-galactan IgA J 539 binds intercatenarily to its polysaccharide antigen. Observations on the binding of antibody to a macromolecular antigen. Mol Immunol. 1986 Jun;23(6):655–660. doi: 10.1016/0161-5890(86)90103-3. [DOI] [PubMed] [Google Scholar]
  20. Goldstein B., Posner R. G., Torney D. C., Erickson J., Holowka D., Baird B. Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody. Biophys J. 1989 Nov;56(5):955–966. doi: 10.1016/S0006-3495(89)82741-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldstein B., Wofsy C. Why is it so hard to dissociate multivalent antigens from cell-surface antibodies? Immunol Today. 1996 Feb;17(2):77–80. doi: 10.1016/0167-5699(96)80583-4. [DOI] [PubMed] [Google Scholar]
  22. Haywood A. M. Virus receptors: binding, adhesion strengthening, and changes in viral structure. J Virol. 1994 Jan;68(1):1–5. doi: 10.1128/jvi.68.1.1-5.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holowka D., Baird B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct. 1996;25:79–112. doi: 10.1146/annurev.bb.25.060196.000455. [DOI] [PubMed] [Google Scholar]
  24. Kane P., Erickson J., Fewtrell C., Baird B., Holowka D. Cross-linking of IgE-receptor complexes at the cell surface: synthesis and characterization of a long bivalent hapten that is capable of triggering mast cells and rat basophilic leukemia cells. Mol Immunol. 1986 Jul;23(7):783–790. doi: 10.1016/0161-5890(86)90090-8. [DOI] [PubMed] [Google Scholar]
  25. Keegan A. D., Paul W. E. Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol Today. 1992 Feb;13(2):63–68. doi: 10.1016/0167-5699(92)90136-U. [DOI] [PubMed] [Google Scholar]
  26. Macken C. A., Perelson A. S. Renewal theory, Geiger counters, and the maximum number of receptors bound to a randomly haptenated polymer chain. IMA J Math Appl Med Biol. 1986;3(2):71–97. [PubMed] [Google Scholar]
  27. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  28. Metzger H. Transmembrane signaling: the joy of aggregation. J Immunol. 1992 Sep 1;149(5):1477–1487. [PubMed] [Google Scholar]
  29. Munro P. D., Jackson C. M., Winzor D. J. On the need to consider kinetic as well as thermodynamic consequences of the parking problem in quantitative studies of nonspecific binding between proteins and linear polymer chains. Biophys Chem. 1998 Apr 20;71(2-3):185–198. doi: 10.1016/s0301-4622(98)00104-5. [DOI] [PubMed] [Google Scholar]
  30. Pazin M. J., Williams L. T. Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci. 1992 Oct;17(10):374–378. doi: 10.1016/0968-0004(92)90003-r. [DOI] [PubMed] [Google Scholar]
  31. Pellequer J. L., Van Regenmortel M. H. Affinity of monoclonal antibodies to large multivalent antigens: influence of steric hindrance on antibody affinity constants calculated from Scatchard plots. Mol Immunol. 1993 Jul;30(10):955–958. doi: 10.1016/0161-5890(93)90022-4. [DOI] [PubMed] [Google Scholar]
  32. Posner R. G., Subramanian K., Goldstein B., Thomas J., Feder T., Holowka D., Baird B. Simultaneous cross-linking by two nontriggering bivalent ligands causes synergistic signaling of IgE Fc epsilon RI complexes. J Immunol. 1995 Oct 1;155(7):3601–3609. [PubMed] [Google Scholar]
  33. Posner R. G., Wofsy C., Goldstein B. The kinetics of bivalent ligand-bivalent receptor aggregation: ring formation and the breakdown of the equivalent site approximation. Math Biosci. 1995 Apr;126(2):171–190. doi: 10.1016/0025-5564(94)00045-2. [DOI] [PubMed] [Google Scholar]
  34. Schwarz G. On the analysis of linear binding effects associated with curved Scatchard plots. Biophys Chem. 1976 Dec;6(1):65–76. doi: 10.1016/0301-4622(76)80062-2. [DOI] [PubMed] [Google Scholar]
  35. Segal D. M., Dower S. K., Titus J. A. The role of non-immune IgG in controlling IgG-mediated effector functions. Mol Immunol. 1983 Nov;20(11):1177–1189. doi: 10.1016/0161-5890(83)90141-4. [DOI] [PubMed] [Google Scholar]
  36. Segal D. M., Taurog J. D., Metzger H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2993–2997. doi: 10.1073/pnas.74.7.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shoup D., Szabo A. Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J. 1982 Oct;40(1):33–39. doi: 10.1016/S0006-3495(82)84455-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sild V., Ståhlberg J., Pettersson G., Johansson G. Effect of potential binding site overlap to binding of cellulase to cellulose: a two-dimensional simulation. FEBS Lett. 1996 Jan 2;378(1):51–56. doi: 10.1016/0014-5793(95)01420-9. [DOI] [PubMed] [Google Scholar]
  39. Stankowski S. Large-ligand adsorption to membranes. III. Cooperativity and general ligand shapes. Biochim Biophys Acta. 1984 Nov 7;777(2):167–182. doi: 10.1016/0005-2736(84)90418-8. [DOI] [PubMed] [Google Scholar]
  40. Sulzer B., Perelson A. S. Immunons revisited: binding of multivalent antigens to B cells. Mol Immunol. 1997 Jan;34(1):63–74. doi: 10.1016/s0161-5890(96)00096-x. [DOI] [PubMed] [Google Scholar]
  41. Taylor J. D., Badcoe I. G., Clarke A. R., Halford S. E. EcoRV restriction endonuclease binds all DNA sequences with equal affinity. Biochemistry. 1991 Sep 10;30(36):8743–8753. doi: 10.1021/bi00100a005. [DOI] [PubMed] [Google Scholar]
  42. Torigoe C., Inman J. K., Metzger H. An unusual mechanism for ligand antagonism. Science. 1998 Jul 24;281(5376):568–572. doi: 10.1126/science.281.5376.568. [DOI] [PubMed] [Google Scholar]
  43. Vogelstein B., Dintzis R. Z., Dintzis H. M. Specific cellular stimulation in the primary immune response: a quantized model. Proc Natl Acad Sci U S A. 1982 Jan;79(2):395–399. doi: 10.1073/pnas.79.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wickham T. J., Granados R. R., Wood H. A., Hammer D. A., Shuler M. L. General analysis of receptor-mediated viral attachment to cell surfaces. Biophys J. 1990 Dec;58(6):1501–1516. doi: 10.1016/S0006-3495(90)82495-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wickham T. J., Shuler M. L., Hammer D. A. A simple model to predict the effectiveness of molecules that block attachment of human rhinoviruses and other viruses. Biotechnol Prog. 1995 Mar-Apr;11(2):164–170. doi: 10.1021/bp00032a008. [DOI] [PubMed] [Google Scholar]
  47. Wiegel F. W., Goldstein B. Equilibrium theory for the binding of bivalent antibodies to regularly spaced sites on a DNA molecule. Biopolymers. 1987 Feb;26(2):297–314. doi: 10.1002/bip.360260210. [DOI] [PubMed] [Google Scholar]
  48. Xu K., Goldstein B., Holowka D., Baird B. Kinetics of multivalent antigen DNP-BSA binding to IgE-Fc epsilon RI in relationship to the stimulated tyrosine phosphorylation of Fc epsilon RI. J Immunol. 1998 Apr 1;160(7):3225–3235. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES