Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):306–318. doi: 10.1016/S0006-3495(99)76891-8

Divalent cation-mediated interaction between cerebroside sulfate and cerebrosides: an investigation of the effect of structural variations of lipids by electrospray ionization mass spectrometry.

K M Koshy 1, J Wang 1, J M Boggs 1
PMCID: PMC1300331  PMID: 10388759

Abstract

Divalent cations mediate a carbohydrate-carbohydrate association between the two major glycolipids, galactosylceramide (GalCer) and its sulfated form, cerebroside sulfate (CBS), of the myelin sheath. We have suggested that interaction between these glycolipids on apposed extracellular surfaces of myelin may be involved in the stability or function of this multilayered structure. A mutant mouse lacking galactolipids because of a disruption in the gene that encodes a galactosyltransferase forms myelin that initially appears relatively normal but is unstable. This myelin contains glucosylceramide (GlcCer) instead of GalCer. To better understand the role of GlcCer in myelin in this mutant, we have compared the ability of divalent cations to complex CBS (galactosyl form) with GlcCer or GalCer in methanol solution by using positive ion electrospray ionization mass spectrometry. Because both the alpha-hydroxylated fatty acid species (HFA) and the nonhydroxylated fatty acid species (NFA) of these lipids occur in myelin, we have also compared the HFA and NFA species. In addition to monomeric Ca2+ complexes of all three lipids and oligomeric Ca2+ complexes of both GalCer and GlcCer, Ca2+ also caused heterotypic complexation of CBS to both GalCer and GlcCer. The heterotypic complexes had the greatest stability of all oligomers formed and survived better at high declustering potentials. Complexes of CBS with GlcCer were less stable than those with GalCer. This was confirmed by using the free sugars and glycosides making up the carbohydrate headgroups of these lipids. HFA species of CBS and GalCer formed more stable complexes than NFA species, but hydroxylation of the fatty acid of GlcCer had no effect. The ability of GlcCer to also complex with CBS, albeit with lower stability, may allow GlcCer to partially compensate for the absence of GalCer in the mouse mutant.

Full Text

The Full Text of this article is available as a PDF (127.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boison D., Stoffel W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11709–11713. doi: 10.1073/pnas.91.24.11709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bosio A., Binczek E., Haupt W. F., Stoffel W. Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice. J Neurochem. 1998 Jan;70(1):308–315. doi: 10.1046/j.1471-4159.1998.70010308.x. [DOI] [PubMed] [Google Scholar]
  3. Bosio A., Binczek E., Stoffel W. Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13280–13285. doi: 10.1073/pnas.93.23.13280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bugg C. E. Calcium binding to carbohydrates. Crystal structure of a hydrated calcium bromide complex of lactose. J Am Chem Soc. 1973 Feb 7;95(3):908–913. doi: 10.1021/ja00784a046. [DOI] [PubMed] [Google Scholar]
  5. Coetzee T., Fujita N., Dupree J., Shi R., Blight A., Suzuki K., Suzuki K., Popko B. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell. 1996 Jul 26;86(2):209–219. doi: 10.1016/s0092-8674(00)80093-8. [DOI] [PubMed] [Google Scholar]
  6. Coetzee T., Suzuki K., Popko B. New perspectives on the function of myelin galactolipids. Trends Neurosci. 1998 Mar;21(3):126–130. doi: 10.1016/s0166-2236(97)01178-8. [DOI] [PubMed] [Google Scholar]
  7. Crook S. J., Boggs J. M., Vistnes A. I., Koshy K. M. Factors affecting surface expression of glycolipids: influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes. Biochemistry. 1986 Nov 18;25(23):7488–7494. doi: 10.1021/bi00371a035. [DOI] [PubMed] [Google Scholar]
  8. D'Urso D., Brophy P. J., Staugaitis S. M., Gillespie C. S., Frey A. B., Stempak J. G., Colman D. R. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron. 1990 Mar;4(3):449–460. doi: 10.1016/0896-6273(90)90057-m. [DOI] [PubMed] [Google Scholar]
  9. Dammer U., Popescu O., Wagner P., Anselmetti D., Güntherodt H. J., Misevic G. N. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science. 1995 Feb 24;267(5201):1173–1175. doi: 10.1126/science.7855599. [DOI] [PubMed] [Google Scholar]
  10. Dupree J. L., Coetzee T., Blight A., Suzuki K., Popko B. Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J Neurosci. 1998 Mar 1;18(5):1642–1649. doi: 10.1523/JNEUROSCI.18-05-01642.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem. 1989 Jun 5;264(16):9476–9484. [PubMed] [Google Scholar]
  12. Fura A., Leary J. A. Differentiation of Ca(2+)- and Mg(2+)-coordinated branched trisaccharide isomers: an electrospray ionization and tandem mass spectrometry study. Anal Chem. 1993 Oct 15;65(20):2805–2811. doi: 10.1021/ac00068a017. [DOI] [PubMed] [Google Scholar]
  13. Huang R. T. Cell adhesion mediated by glycolipids. Nature. 1978 Dec 7;276(5688):624–626. doi: 10.1038/276624a0. [DOI] [PubMed] [Google Scholar]
  14. KOPACZYK K. C., RADIN N. S. IN VIVO CONVERSIONS OF CEREBROSIDE AND CERAMIDE IN RAT BRAIN. J Lipid Res. 1965 Jan;6:140–145. [PubMed] [Google Scholar]
  15. Kojima N., Hakomori S. Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J Biol Chem. 1991 Sep 15;266(26):17552–17558. [PubMed] [Google Scholar]
  16. Kojima N., Hakomori S. Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J Biol Chem. 1989 Dec 5;264(34):20159–20162. [PubMed] [Google Scholar]
  17. Kojima N., Shiota M., Sadahira Y., Handa K., Hakomori S. Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J Biol Chem. 1992 Aug 25;267(24):17264–17270. [PubMed] [Google Scholar]
  18. Koshy K. M., Boggs J. M. Investigation of the calcium-mediated association between the carbohydrate head groups of galactosylceramide and galactosylceramide I3 sulfate by electrospray ionization mass spectrometry. J Biol Chem. 1996 Feb 16;271(7):3496–3499. doi: 10.1074/jbc.271.7.3496. [DOI] [PubMed] [Google Scholar]
  19. Koshy K. M., Boggs J. M. Partial synthesis and physical properties of cerebroside sulfate containing palmitic acid or alpha-hydroxy palmitic acid. Chem Phys Lipids. 1983 Dec;34(1):41–53. doi: 10.1016/0009-3084(83)90058-0. [DOI] [PubMed] [Google Scholar]
  20. Lee D. C., Miller I. R., Chapman D. An infrared spectroscopic study of metastable and stable forms of hydrated cerebroside bilayers. Biochim Biophys Acta. 1986 Jul 24;859(2):266–270. doi: 10.1016/0005-2736(86)90222-1. [DOI] [PubMed] [Google Scholar]
  21. Menikh A., Nyholm P. G., Boggs J. M. Characterization of the interaction of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling. Biochemistry. 1997 Mar 25;36(12):3438–3447. doi: 10.1021/bi961869q. [DOI] [PubMed] [Google Scholar]
  22. Misevic G. N., Burger M. M. Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J Biol Chem. 1993 Mar 5;268(7):4922–4929. [PubMed] [Google Scholar]
  23. Misevic G. N., Finne J., Burger M. M. Involvement of carbohydrates as multiple low affinity interaction sites in the self-association of the aggregation factor from the marine sponge Microciona prolifera. J Biol Chem. 1987 Apr 25;262(12):5870–5877. [PubMed] [Google Scholar]
  24. Padrón R., Mateu L., Kirschner D. A. X-ray diffraction study of the kinetics of myelin lattice swelling. Effect of divalent cations. Biophys J. 1979 Nov;28(2):231–239. doi: 10.1016/S0006-3495(79)85173-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RendlemaJA Complexe of alkali metals and alkaline-earth metals with carbohydrates. Adv Carbohydr Chem Biochem. 1966;21:209–271. [PubMed] [Google Scholar]
  26. Spillmann D. Carbohydrates in cellular recognition: from leucine-zipper to sugar-zipper? Glycoconj J. 1994 Jun;11(3):169–171. doi: 10.1007/BF00731214. [DOI] [PubMed] [Google Scholar]
  27. Spillmann D., Hård K., Thomas-Oates J., Vliegenthart J. F., Misevic G., Burger M. M., Finne J. Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera. J Biol Chem. 1993 Jun 25;268(18):13378–13387. [PubMed] [Google Scholar]
  28. Spillmann D., Thomas-Oates J. E., van Kuik J. A., Vliegenthart J. F., Misevic G., Burger M. M., Finne J. Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera. J Biol Chem. 1995 Mar 10;270(10):5089–5097. doi: 10.1074/jbc.270.10.5089. [DOI] [PubMed] [Google Scholar]
  29. Stewart R. J., Boggs J. M. A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition. Biochemistry. 1993 Oct 12;32(40):10666–10674. doi: 10.1021/bi00091a017. [DOI] [PubMed] [Google Scholar]
  30. Stewart R. J., Boggs J. M. Exposure of galactosylceramide to galactose oxidase in liposomes: dependence on lipid environment and ceramide composition. Biochemistry. 1993 Jun 1;32(21):5605–5614. doi: 10.1021/bi00072a016. [DOI] [PubMed] [Google Scholar]
  31. Stoffel W., Bosio A. Myelin glycolipids and their functions. Curr Opin Neurobiol. 1997 Oct;7(5):654–661. doi: 10.1016/s0959-4388(97)80085-2. [DOI] [PubMed] [Google Scholar]
  32. Svennerholm L., Ställberg-Stenhagen S. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age. J Lipid Res. 1968 Mar;9(2):215–225. [PubMed] [Google Scholar]
  33. Yu Z. W., Calvert T. L., Leckband D. Molecular forces between membranes displaying neutral glycosphingolipids: evidence for carbohydrate attraction. Biochemistry. 1998 Feb 10;37(6):1540–1550. doi: 10.1021/bi971010o. [DOI] [PubMed] [Google Scholar]
  34. Zimmerman J. W., Lindermuth J., Fish P. A., Palace G. P., Stevenson T. T., DeMong D. E. A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem. 1998 Aug 21;273(34):22014–22020. doi: 10.1074/jbc.273.34.22014. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES