Abstract
Conformational changes in subdomain 2 of actin were investigated using fluorescence probes dansyl cadaverine (DC) or dansyl ethylenediamine (DED) covalently attached to Gln41. Examination of changes in the fluorescence emission spectra as a function of time during Ca2+/Mg2+ and ATP/ADP exchange at the high-affinity site for divalent cation-nucleotide complex in G-actin confirmed a profound influence of the type of nucleotide but failed to detect a significant cation-dependent difference in the environment of Gln41. No significant difference between Ca- and Mg-actin was also seen in the magnitude of the fluorescence changes resulting from the polymerization of these two actin forms. Evidence is presented that earlier reported cation-dependent differences in the conformation of the loop 38-52 may be related to time-dependent changes in the conformation of subdomain 2 in DED- or DC-labeled G-actin, accelerated by substitution of Mg2+ for Ca2+ in CaATP-G-actin and, in particular, by conversion of MgATP- into MgADP-G-actin. These spontaneous changes are associated with a denaturation-driven release of the bound nucleotide that is promoted by two effects of DED or DC labeling: lowered affinity of actin for nucleotide and acceleration of ATP hydrolysis on MgATP-G-actin that converts it into a less stable MgADP form. Evidence is presented that the changes in the environment of Gln41 accompanying actin polymerization result in part from the release of Pi after the hydrolysis of ATP on the polymer. A similarity of this change to that accompanying replacement of the bound ATP with ADP in G-actin is discussed.
Full Text
The Full Text of this article is available as a PDF (146.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attri A. K., Lewis M. S., Korn E. D. The formation of actin oligomers studied by analytical ultracentrifugation. J Biol Chem. 1991 Apr 15;266(11):6815–6824. [PubMed] [Google Scholar]
- Carlier M. F. Actin: protein structure and filament dynamics. J Biol Chem. 1991 Jan 5;266(1):1–4. [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments. Biochemistry. 1986 Dec 2;25(24):7789–7792. doi: 10.1021/bi00372a001. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D., Korn E. D. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. J Biol Chem. 1987 Mar 5;262(7):3052–3059. [PubMed] [Google Scholar]
- Chik J. K., Lindberg U., Schutt C. E. The structure of an open state of beta-actin at 2.65 A resolution. J Mol Biol. 1996 Nov 8;263(4):607–623. doi: 10.1006/jmbi.1996.0602. [DOI] [PubMed] [Google Scholar]
- Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Combeau C., Carlier M. F. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF-3 and A1F-4. J Biol Chem. 1988 Nov 25;263(33):17429–17436. [PubMed] [Google Scholar]
- Crosbie R. H., Miller C., Cheung P., Goodnight T., Muhlrad A., Reisler E. Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys J. 1994 Nov;67(5):1957–1964. doi: 10.1016/S0006-3495(94)80678-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drewes G., Faulstich H. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10. J Biol Chem. 1991 Mar 25;266(9):5508–5513. [PubMed] [Google Scholar]
- Eligula L., Chuang L., Phillips M. L., Motoki M., Seguro K., Muhlrad A. Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636-642 lysine-rich loop of myosin subfragment 1. Biophys J. 1998 Feb;74(2 Pt 1):953–963. doi: 10.1016/S0006-3495(98)74018-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
- Estes J. E., Selden L. A., Gershman L. C. Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model. J Biol Chem. 1987 Apr 15;262(11):4952–4957. [PubMed] [Google Scholar]
- Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil. 1992 Jun;13(3):272–284. doi: 10.1007/BF01766455. [DOI] [PubMed] [Google Scholar]
- Faulstich H., Merkler I., Blackholm H., Stournaras C. Nucleotide in monomeric actin regulates the reactivity of the thiol groups. Biochemistry. 1984 Apr 10;23(8):1608–1612. doi: 10.1021/bi00303a004. [DOI] [PubMed] [Google Scholar]
- Frieden C., Patane K. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP. Biochemistry. 1985 Jul 16;24(15):4192–4196. doi: 10.1021/bi00336a056. [DOI] [PubMed] [Google Scholar]
- Gershman L. C., Selden L. A., Estes J. E. High affinity binding of divalent cation to actin monomer is much stronger than previously reported. Biochem Biophys Res Commun. 1986 Mar 13;135(2):607–614. doi: 10.1016/0006-291x(86)90036-7. [DOI] [PubMed] [Google Scholar]
- Gershman L. C., Selden L. A., Kinosian H. J., Estes J. E. Preparation and polymerization properties of monomeric ADP-actin. Biochim Biophys Acta. 1989 Apr 6;995(2):109–115. doi: 10.1016/0167-4838(89)90068-x. [DOI] [PubMed] [Google Scholar]
- Hegyi G., Premecz G., Sain B., Mühlrád A. Selective carbethoxylation of the histidine residues of actin by diethylpyrocarbonate. Eur J Biochem. 1974 May 2;44(1):7–12. doi: 10.1111/j.1432-1033.1974.tb03452.x. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
- Houk T. W., Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974 Nov;62(1):66–74. doi: 10.1016/0003-2697(74)90367-4. [DOI] [PubMed] [Google Scholar]
- Huang Y. P., Seguro K., Motoki M., Tawada K. Cross-linking of contractile proteins from skeletal muscle by treatment with microbial transglutaminase. J Biochem. 1992 Aug;112(2):229–234. doi: 10.1093/oxfordjournals.jbchem.a123882. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
- Khaitlina S. Y., Moraczewska J., Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993 Dec 15;218(3):911–920. doi: 10.1111/j.1432-1033.1993.tb18447.x. [DOI] [PubMed] [Google Scholar]
- Kim E., Motoki M., Seguro K., Muhlrad A., Reisler E. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41. Biophys J. 1995 Nov;69(5):2024–2032. doi: 10.1016/S0006-3495(95)80072-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange rates. J Biol Chem. 1993 Apr 25;268(12):8683–8691. [PubMed] [Google Scholar]
- Kodama T., Fukui K., Kometani K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem. 1986 May;99(5):1465–1472. doi: 10.1093/oxfordjournals.jbchem.a135616. [DOI] [PubMed] [Google Scholar]
- Konno K., Morales M. F. Exposure of actin thiols by the removal of tightly held calcium ions. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7904–7908. doi: 10.1073/pnas.82.23.7904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuznetsova I., Antropova O., Turoverov K., Khaitlina S. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS. FEBS Lett. 1996 Mar 25;383(1-2):105–108. doi: 10.1016/0014-5793(96)00238-4. [DOI] [PubMed] [Google Scholar]
- Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
- Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
- Ludescher R. D., Liu Z. Characterization of skeletal muscle actin labeled with the triplet probe erythrosin-5-iodoacetamide. Photochem Photobiol. 1993 Dec;58(6):858–866. doi: 10.1111/j.1751-1097.1993.tb04984.x. [DOI] [PubMed] [Google Scholar]
- MARTONOSI A., GOUVEA M. A. Studies on actin. VI. The interaction of nucleoside triphosphates with actin. J Biol Chem. 1961 May;236:1345–1352. [PubMed] [Google Scholar]
- McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
- Miki M., Kouyama T. Domain motion in actin observed by fluorescence resonance energy transfer. Biochemistry. 1994 Aug 23;33(33):10171–10177. doi: 10.1021/bi00199a045. [DOI] [PubMed] [Google Scholar]
- Moraczewska J., Strzelecka-Gołaszewska H., Moens P. D., dos Remedios C. G. Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem J. 1996 Jul 15;317(Pt 2):605–611. doi: 10.1042/bj3170605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mossakowska M., Moraczewska J., Khaitlina S., Strzelecka-Golaszewska H. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem J. 1993 Feb 1;289(Pt 3):897–902. doi: 10.1042/bj2890897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muhlrad A., Cheung P., Phan B. C., Miller C., Reisler E. Dynamic properties of actin. Structural changes induced by beryllium fluoride. J Biol Chem. 1994 Apr 22;269(16):11852–11858. [PubMed] [Google Scholar]
- NAGY B., JENCKS W. P. Optical rotatory dispersion of G-actin. Biochemistry. 1962 Nov;1:987–996. doi: 10.1021/bi00912a008. [DOI] [PubMed] [Google Scholar]
- Nowak E., Strzelecka-Golaszewska H., Goody R. S. Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry. 1988 Mar 8;27(5):1785–1792. doi: 10.1021/bi00405a060. [DOI] [PubMed] [Google Scholar]
- Ooi A., Mihashi K. Effects of subtilisin cleavage of monomeric actin on its nucleotide binding. J Biochem. 1996 Dec;120(6):1104–1110. doi: 10.1093/oxfordjournals.jbchem.a021528. [DOI] [PubMed] [Google Scholar]
- Orlova A., Egelman E. H. A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol. 1993 Jul 20;232(2):334–341. doi: 10.1006/jmbi.1993.1393. [DOI] [PubMed] [Google Scholar]
- Orlova A., Egelman E. H. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol. 1992 Oct 20;227(4):1043–1053. doi: 10.1016/0022-2836(92)90520-t. [DOI] [PubMed] [Google Scholar]
- Page R., Lindberg U., Schutt C. E. Domain motions in actin. J Mol Biol. 1998 Jul 17;280(3):463–474. doi: 10.1006/jmbi.1998.1879. [DOI] [PubMed] [Google Scholar]
- Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
- Schwyter D., Phillips M., Reisler E. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry. 1989 Jul 11;28(14):5889–5895. doi: 10.1021/bi00440a027. [DOI] [PubMed] [Google Scholar]
- Selden L. A., Estes J. E., Gershman L. C. The tightly bound divalent cation regulates actin polymerization. Biochem Biophys Res Commun. 1983 Oct 31;116(2):478–485. doi: 10.1016/0006-291x(83)90548-x. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Steinmetz M. O., Goldie K. N., Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. J Cell Biol. 1997 Aug 11;138(3):559–574. doi: 10.1083/jcb.138.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strzelecka-Golaszewska H., Wozniak A., Hult T., Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J. 1996 Jun 15;316(Pt 3):713–721. doi: 10.1042/bj3160713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Moraczewska J., Khaitlina S. Y., Mossakowska M. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem. 1993 Feb 1;211(3):731–742. doi: 10.1111/j.1432-1033.1993.tb17603.x. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Mossakowska M., Woźniak A., Moraczewska J., Nakayama H. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem J. 1995 Apr 15;307(Pt 2):527–534. doi: 10.1042/bj3070527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takashi R. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry. 1988 Feb 9;27(3):938–943. doi: 10.1021/bi00403a015. [DOI] [PubMed] [Google Scholar]
- Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tirion M. M., ben-Avraham D. Normal mode analysis of G-actin. J Mol Biol. 1993 Mar 5;230(1):186–195. doi: 10.1006/jmbi.1993.1135. [DOI] [PubMed] [Google Scholar]
- Valentin-Ranc C., Carlier M. F. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin. J Biol Chem. 1991 Apr 25;266(12):7668–7675. [PubMed] [Google Scholar]
- West J. J. Binding of nucleotide to cation-free G-action. Biochemistry. 1971 Sep 14;10(19):3547–3553. doi: 10.1021/bi00795a009. [DOI] [PubMed] [Google Scholar]