Abstract
A new experimental approach has been developed to study the distribution of local electrostatic potential around specific protons in biologically important molecules. The approach is the development of a method denoted as "spin label/spin probe," which was proposed by one of us (. Mol. Biol. 6:498-507). The proposed method is based upon the quantitative measurement of the contribution of differently charged nitroxide probes to the spin lattice relaxation rate (1/T1) of protons in the molecule of interest, followed by calculation of local electrostatic potential using the classical Debye equation. In parallel, the theoretical calculation of potential distribution with the use of the MacSpartan Plus 1.0 program has been performed. Application of the method to solutions of simple organic molecules (aliphatic and aromatic alcohols, aliphatic carboxylates (propionate anion), and protonated ethyl amine and imidazole) allowed us to estimate the effective potential around the molecules under investigation. These were found to be in good agreement with theoretically expected values. This technique was then applied to zwitterionic amino acids bearing neutral and charged side chains (glycine, lysine, histidine, and aspartic acid). The reliability of the general approach is proved by the data presented in this paper. Application of this new methodology can afford insight into the biochemical significance of electrostatic effects in biological systems.
Full Text
The Full Text of this article is available as a PDF (117.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anni H., Vanderkooi J. M., Sharp K. A., Yonetani T., Hopkins S. C., Herenyi L., Fidy J. Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high-resolution fluorescence spectroscopy. Biochemistry. 1994 Mar 29;33(12):3475–3486. doi: 10.1021/bi00178a003. [DOI] [PubMed] [Google Scholar]
- Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajorath J., Kitson D. H., Kraut J., Hagler A. T. The electrostatic potential of Escherichia coli dihydrofolate reductase. Proteins. 1991;11(1):1–12. doi: 10.1002/prot.340110102. [DOI] [PubMed] [Google Scholar]
- Bashford D., Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol. 1992 Mar 20;224(2):473–486. doi: 10.1016/0022-2836(92)91009-e. [DOI] [PubMed] [Google Scholar]
- Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
- Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5804–5808. doi: 10.1073/pnas.88.13.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brünger A. T., Leahy D. J., Hynes T. R., Fox R. O. 2.9 A resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J Mol Biol. 1991 Sep 5;221(1):239–256. doi: 10.1016/0022-2836(91)80217-i. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Honig B. H. Energetics of charge-charge interactions in proteins. Proteins. 1988;3(1):32–52. doi: 10.1002/prot.340030104. [DOI] [PubMed] [Google Scholar]
- Gilson M. K. Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins. 1993 Mar;15(3):266–282. doi: 10.1002/prot.340150305. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Rashin A., Fine R., Honig B. On the calculation of electrostatic interactions in proteins. J Mol Biol. 1985 Aug 5;184(3):503–516. doi: 10.1016/0022-2836(85)90297-9. [DOI] [PubMed] [Google Scholar]
- Hao Y., Pear M. R., Busath D. D. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels. Biophys J. 1997 Oct;73(4):1699–1716. doi: 10.1016/S0006-3495(97)78202-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Ilan Y., Shafferman A. Intramolecular electron transfer and binding constants in iron hexacyanide-cytochrome c complexes as studied by pulse radiolysis. Biochim Biophys Acta. 1979 Oct 10;548(1):161–165. doi: 10.1016/0005-2728(79)90197-x. [DOI] [PubMed] [Google Scholar]
- Kitson D. H., Hagler A. T. Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry. 1988 Jul 12;27(14):5246–5257. doi: 10.1021/bi00414a045. [DOI] [PubMed] [Google Scholar]
- Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
- Kopple K. D., Go A. Conformation of cyclic peptides. 9. Cyclodimerization of a hexapeptide unit at high concentration. Rationalization in terms of the conformation of the cyclic dodecapeptide. J Am Chem Soc. 1977 Nov 9;99(23):7698–7704. doi: 10.1021/ja00465a047. [DOI] [PubMed] [Google Scholar]
- Krugh T. R. Proximity of the nucleoside monophosphate and triphosphate binding sites on deoxyribonucleic acid polymerase. Biochemistry. 1971 Jun 22;10(13):2594–2599. doi: 10.1021/bi00789a028. [DOI] [PubMed] [Google Scholar]
- Lanir A., Navon G. Nuclear magnetic resonance studies of carbonic anhydrase. Binding of sulfacetamide to the manganese enzyme. Biochemistry. 1972 Sep 12;11(19):3536–3544. doi: 10.1021/bi00769a008. [DOI] [PubMed] [Google Scholar]
- Likhtenshein G. I., Akhmedov YuD, Ivanov L. V., Krinitskaya L. A., Kokhanov YuV Investigation of the lysozyme macromolecule by a spin-labeling method. Mol Biol. 1974 Jul;8(1):40–48. [PubMed] [Google Scholar]
- Lockhart D. J., Kim P. S. Electrostatic screening of charge and dipole interactions with the helix backbone. Science. 1993 Apr 9;260(5105):198–202. doi: 10.1126/science.8469972. [DOI] [PubMed] [Google Scholar]
- Lockhart D. J., Kim P. S. Internal stark effect measurement of the electric field at the amino terminus of an alpha helix. Science. 1992 Aug 14;257(5072):947–951. doi: 10.1126/science.1502559. [DOI] [PubMed] [Google Scholar]
- Loewenthal R., Sancho J., Reinikainen T., Fersht A. R. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J Mol Biol. 1993 Jul 20;232(2):574–583. doi: 10.1006/jmbi.1993.1412. [DOI] [PubMed] [Google Scholar]
- Mildvan A. S., Weiner H. Interaction of a spin-labeled analogue of nicotinamide adenine dinucleotide with alcohol dehydrogenase. 3. Thermodynamic, kinetic, and structural properties of ternary complexes as determined by nuclear magnetic resonance. J Biol Chem. 1969 May 10;244(9):2465–2475. [PubMed] [Google Scholar]
- Nicholson H., Anderson D. E., Dao-pin S., Matthews B. W. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry. 1991 Oct 15;30(41):9816–9828. doi: 10.1021/bi00105a002. [DOI] [PubMed] [Google Scholar]
- Reuben J., Kayne F. J. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change. J Biol Chem. 1971 Oct 25;246(20):6227–6234. [PubMed] [Google Scholar]
- Roberts G. C., Hannah J., Jardetzky O. Noncovalent binding of a spin-labeled inhibitor to ribonuclease. Science. 1969 Aug 1;165(3892):504–506. doi: 10.1126/science.165.3892.504. [DOI] [PubMed] [Google Scholar]
- Scott D. L., Mandel A. M., Sigler P. B., Honig B. The electrostatic basis for the interfacial binding of secretory phospholipases A2. Biophys J. 1994 Aug;67(2):493–504. doi: 10.1016/S0006-3495(94)80546-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
- Sitkoff D., Lockhart D. J., Sharp K. A., Honig B. Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys J. 1994 Dec;67(6):2251–2260. doi: 10.1016/S0006-3495(94)80709-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloan D. L., Mildvan A. S. Magnetic resonance studies of the geometry of bound nicotinamide adenine dinucleotide and isobutyramide on spin-labeled alcohol dehydrogenase. Biochemistry. 1974 Apr 9;13(8):1711–1718. doi: 10.1021/bi00705a024. [DOI] [PubMed] [Google Scholar]
- Syrtsova L. A., Nazarova I. I., Pisarskaia T. N., Nazarov V. B. Issledovanie ATFaznogo uchastka aktivnogo tsentra nitroenzy metodom ia.m.r. Dokl Akad Nauk SSSR. 1972 Sep 11;206(2):367–369. [PubMed] [Google Scholar]
- Taborsky G. Interaction of cytochrome c, ferrous ion, and phosphate. Electron transfer within a stoichiometric complex. J Biol Chem. 1979 Jun 25;254(12):5246–5251. [PubMed] [Google Scholar]
- Taylor J. S., Leigh J. S., Jr, Cohn M. Magnetic resonance studies of spin-labeled creatine kinase system and interaction of two paramagnetic probes. Proc Natl Acad Sci U S A. 1969 Sep;64(1):219–226. doi: 10.1073/pnas.64.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tidor B., Karplus M. Simulation analysis of the stability mutant R96H of T4 lysozyme. Biochemistry. 1991 Apr 2;30(13):3217–3228. doi: 10.1021/bi00227a009. [DOI] [PubMed] [Google Scholar]
- Tsui F. C., Sundberg S. A., Hubbell W. L. Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry. Biophys J. 1990 Jan;57(1):85–97. doi: 10.1016/S0006-3495(90)82509-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wien R. W., Morrisett J. D., McConnell H. M. Spin-label-induced nuclear relaxation. Distances between bound saccharides, histidine-15, and tryptophan-123 on lysozyme in solution. Biochemistry. 1972 Sep 26;11(20):3707–3716. doi: 10.1021/bi00770a008. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
