Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):758–774. doi: 10.1016/S0006-3495(99)76930-4

Membrane stretch affects gating modes of a skeletal muscle sodium channel.

I V Tabarean 1, P Juranka 1, C E Morris 1
PMCID: PMC1300370  PMID: 10423424

Abstract

The alpha subunit of the human skeletal muscle Na(+) channel recorded from cell-attached patches yielded, as expected for Xenopus oocytes, two current components that were stable for tens of minutes during 0.2 Hz stimulation. Within seconds of applying sustained stretch, however, the slower component began decreasing and, depending on stretch intensity, disappeared in 1-3 min. Simultaneously, the faster current increased. The resulting fast current kinetics and voltage sensitivity were indistinguishable from the fast components 1) left after 10 Hz depolarizations, and 2) that dominated when alpha subunit was co-expressed with human beta1 subunit. Although high frequency depolarization-induced loss of slow current was reversible, the stretch-induced slow-to-fast conversion was irreversible. The conclusion that stretch converted a single population of alpha subunits from an abnormal slow to a bona fide fast gating mode was confirmed by using gigaohm seals formed without suction, in which fast gating was originally absent. For brain Na(+) channels, co-expressing G proteins with the channel alpha subunit yields slow gating. Because both stretch and beta1 subunits induced the fast gating mode, perhaps they do so by minimizing alpha subunit interactions with G proteins or with other regulatory molecules available in oocyte membrane. Because of the possible involvement of oocyte molecules, it remains to be determined whether the Na(+) channel alpha subunit was directly or secondarily susceptible to bilayer tension.

Full Text

The Full Text of this article is available as a PDF (230.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld V. J., Goldin A. L., Krafte D. S., Marshall J., Dunn J. M., Catterall W. A., Lester H. A., Davidson N., Dunn R. J. A rat brain Na+ channel alpha subunit with novel gating properties. Neuron. 1988 Aug;1(6):449–461. doi: 10.1016/0896-6273(88)90176-6. [DOI] [PubMed] [Google Scholar]
  2. Bennett P. B., Jr, Makita N., George A. L., Jr A molecular basis for gating mode transitions in human skeletal muscle Na+ channels. FEBS Lett. 1993 Jul 12;326(1-3):21–24. doi: 10.1016/0014-5793(93)81752-l. [DOI] [PubMed] [Google Scholar]
  3. Bennett P. B., Yazawa K., Makita N., George A. L., Jr Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995 Aug 24;376(6542):683–685. doi: 10.1038/376683a0. [DOI] [PubMed] [Google Scholar]
  4. Cannon S. C., Hayward L. J., Beech J., Brown R. H., Jr Sodium channel inactivation is impaired in equine hyperkalemic periodic paralysis. J Neurophysiol. 1995 May;73(5):1892–1899. doi: 10.1152/jn.1995.73.5.1892. [DOI] [PubMed] [Google Scholar]
  5. Cannon S. C., McClatchey A. I., Gusella J. F. Modification of the Na+ current conducted by the rat skeletal muscle alpha subunit by coexpression with a human brain beta subunit. Pflugers Arch. 1993 Apr;423(1-2):155–157. doi: 10.1007/BF00374974. [DOI] [PubMed] [Google Scholar]
  6. Casado M., Ascher P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J Physiol. 1998 Dec 1;513(Pt 2):317–330. doi: 10.1111/j.1469-7793.1998.317bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chahine M., Bennett P. B., George A. L., Jr, Horn R. Functional expression and properties of the human skeletal muscle sodium channel. Pflugers Arch. 1994 May;427(1-2):136–142. doi: 10.1007/BF00585952. [DOI] [PubMed] [Google Scholar]
  8. Clapham D. E. Intracellular signalling: more jobs for G beta gamma. Curr Biol. 1996 Jul 1;6(7):814–816. doi: 10.1016/s0960-9822(02)00602-4. [DOI] [PubMed] [Google Scholar]
  9. Cota G., Armstrong C. M. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent. J Gen Physiol. 1989 Aug;94(2):213–232. doi: 10.1085/jgp.94.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Favre I., Moczydlowski E., Schild L. Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins. J Gen Physiol. 1995 Aug;106(2):203–229. doi: 10.1085/jgp.106.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleig A., Ruben P. C., Rayner M. D. Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches. Pflugers Arch. 1994 Jul;427(5-6):399–405. doi: 10.1007/BF00374253. [DOI] [PubMed] [Google Scholar]
  12. Gee S. H., Madhavan R., Levinson S. R., Caldwell J. H., Sealock R., Froehner S. C. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci. 1998 Jan 1;18(1):128–137. doi: 10.1523/JNEUROSCI.18-01-00128.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gil Z., Magleby K. L., Silberberg S. D. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes. Biophys J. 1999 Jun;76(6):3118–3127. doi: 10.1016/S0006-3495(99)77463-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gonoi T., Hille B. Gating of Na channels. Inactivation modifiers discriminate among models. J Gen Physiol. 1987 Feb;89(2):253–274. doi: 10.1085/jgp.89.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Hamill O. P., McBride D. W., Jr Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol. 1997;59:621–631. doi: 10.1146/annurev.physiol.59.1.621. [DOI] [PubMed] [Google Scholar]
  17. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  18. Hebert T. E., Monette R., Dunn R. J., Drapeau P. Voltage dependencies of the fast and slow gating modes of RIIA sodium channels. Proc Biol Sci. 1994 Jun 22;256(1347):253–261. doi: 10.1098/rspb.1994.0078. [DOI] [PubMed] [Google Scholar]
  19. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  20. Ji S., John S. A., Lu Y., Weiss J. N. Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit. J Biol Chem. 1998 Jan 16;273(3):1324–1328. doi: 10.1074/jbc.273.3.1324. [DOI] [PubMed] [Google Scholar]
  21. Krafte D. S., Goldin A. L., Auld V. J., Dunn R. J., Davidson N., Lester H. A. Inactivation of cloned Na channels expressed in Xenopus oocytes. J Gen Physiol. 1990 Oct;96(4):689–706. doi: 10.1085/jgp.96.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krafte D. S., Snutch T. P., Leonard J. P., Davidson N., Lester H. A. Evidence for the involvement of more than one mRNA species in controlling the inactivation process of rat and rabbit brain Na channels expressed in Xenopus oocytes. J Neurosci. 1988 Aug;8(8):2859–2868. doi: 10.1523/JNEUROSCI.08-08-02859.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Langton P. D. Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol. 1993 Nov;471:1–11. doi: 10.1113/jphysiol.1993.sp019887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ma J. Y., Catterall W. A., Scheuer T. Persistent sodium currents through brain sodium channels induced by G protein betagamma subunits. Neuron. 1997 Aug;19(2):443–452. doi: 10.1016/s0896-6273(00)80952-6. [DOI] [PubMed] [Google Scholar]
  26. Martinac B., Adler J., Kung C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature. 1990 Nov 15;348(6298):261–263. doi: 10.1038/348261a0. [DOI] [PubMed] [Google Scholar]
  27. McClatchey A. I., Cannon S. C., Slaugenhaupt S. A., Gusella J. F. The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet. 1993 Jun;2(6):745–749. doi: 10.1093/hmg/2.6.745. [DOI] [PubMed] [Google Scholar]
  28. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 1986 Dec;407(6):577–588. doi: 10.1007/BF00582635. [DOI] [PubMed] [Google Scholar]
  29. Moorman J. R., Kirsch G. E., VanDongen A. M., Joho R. H., Brown A. M. Fast and slow gating of sodium channels encoded by a single mRNA. Neuron. 1990 Feb;4(2):243–252. doi: 10.1016/0896-6273(90)90099-2. [DOI] [PubMed] [Google Scholar]
  30. Mosbacher J., Langer M., Hörber J. K., Sachs F. Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol. 1998 Jan;111(1):65–74. doi: 10.1085/jgp.111.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nakajima Y., Nakajima S., Kozasa T. Activation of G protein-coupled inward rectifier K+ channels in brain neurons requires association of G protein beta gamma subunits with cell membrane. FEBS Lett. 1996 Jul 22;390(2):217–220. doi: 10.1016/0014-5793(96)00661-8. [DOI] [PubMed] [Google Scholar]
  32. Paoletti P., Ascher P. Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron. 1994 Sep;13(3):645–655. doi: 10.1016/0896-6273(94)90032-9. [DOI] [PubMed] [Google Scholar]
  33. Patel A. J., Honoré E., Maingret F., Lesage F., Fink M., Duprat F., Lazdunski M. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 1998 Aug 3;17(15):4283–4290. doi: 10.1093/emboj/17.15.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Qu Y., Isom L. L., Westenbroek R. E., Rogers J. C., Tanada T. N., McCormick K. A., Scheuer T., Catterall W. A. Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem. 1995 Oct 27;270(43):25696–25701. doi: 10.1074/jbc.270.43.25696. [DOI] [PubMed] [Google Scholar]
  35. Roberts R. H., Barchi R. L. The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. J Biol Chem. 1987 Feb 15;262(5):2298–2303. [PubMed] [Google Scholar]
  36. Sachs F., Morris C. E. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol. 1998;132:1–77. doi: 10.1007/BFb0004985. [DOI] [PubMed] [Google Scholar]
  37. Shyng S. L., Nichols C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998 Nov 6;282(5391):1138–1141. doi: 10.1126/science.282.5391.1138. [DOI] [PubMed] [Google Scholar]
  38. Smith R. D., Goldin A. L. Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci. 1998 Feb 1;18(3):811–820. doi: 10.1523/JNEUROSCI.18-03-00811.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sohl J. L., Jaswal S. S., Agard D. A. Unfolded conformations of alpha-lytic protease are more stable than its native state. Nature. 1998 Oct 22;395(6704):817–819. doi: 10.1038/27470. [DOI] [PubMed] [Google Scholar]
  40. Taylor C. P. Na+ currents that fail to inactivate. Trends Neurosci. 1993 Nov;16(11):455–460. doi: 10.1016/0166-2236(93)90077-y. [DOI] [PubMed] [Google Scholar]
  41. Terakawa S., Nakayama T. Are axoplasmic microtubules necessary for membrane excitation? J Membr Biol. 1985;85(1):65–77. doi: 10.1007/BF01872006. [DOI] [PubMed] [Google Scholar]
  42. Ukomadu C., Zhou J., Sigworth F. J., Agnew W. S. muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron. 1992 Apr;8(4):663–676. doi: 10.1016/0896-6273(92)90088-u. [DOI] [PubMed] [Google Scholar]
  43. Wan X., Juranka P., Morris C. E. Activation of mechanosensitive currents in traumatized membrane. Am J Physiol. 1999 Feb;276(2 Pt 1):C318–C327. doi: 10.1152/ajpcell.1999.276.2.C318. [DOI] [PubMed] [Google Scholar]
  44. Wood S. J., Slater C. R. beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J Cell Biol. 1998 Feb 9;140(3):675–684. doi: 10.1083/jcb.140.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhou J. Y., Potts J. F., Trimmer J. S., Agnew W. S., Sigworth F. J. Multiple gating modes and the effect of modulating factors on the microI sodium channel. Neuron. 1991 Nov;7(5):775–785. doi: 10.1016/0896-6273(91)90280-d. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES