Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Aug;77(2):1093–1099. doi: 10.1016/S0006-3495(99)76959-6

Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study.

M Bolognesi 1, C Rosano 1, R Losso 1, A Borassi 1, M Rizzi 1, J B Wittenberg 1, A Boffi 1, P Ascenzi 1
PMCID: PMC1300399  PMID: 10423453

Abstract

The x-ray crystal structures of the cyanide derivative of Lucina pectinata monomeric hemoglobin I (L. pectinata HbI) and sperm whale (Physeter catodon) myoglobin (Mb), generally taken as reference models for monomeric hemoproteins carrying hydrogen sulfide and oxygen, respectively, have been determined at 1.9 A (R-factor = 0. 184), and 1.8 A (R-factor = 0.181) resolution, respectively, at room temperature (lambda = 1.542 A). Moreover, the x-ray crystal structure of the L. pectinata HbI:cyanide derivative has been studied at 1.4-A resolution (R-factor = 0.118) and 100 K (on a synchrotron source lambda = 0.998 A). At room temperature, the cyanide ligand is roughly parallel to the heme plane of L. pectinata HbI, being located approximately 2.5 A from the iron atom. On the other hand, the crystal structure of the L. pectinata HbI:cyanide derivative at 100 K shows that the diatomic ligand is coordinated to the iron atom in an orientation almost perpendicular to the heme (the Fe-C distance being 1.95 A), adopting a coordination geometry strictly reminescent of that observed in sperm whale Mb, at room temperature. The unusual cyanide distal site orientation observed in L. pectinata HbI, at room temperature, may reflect reduction of the heme Fe(III) atom induced by free radical species during x-ray data collection using Cu Kalpha radiation.

Full Text

The Full Text of this article is available as a PDF (100.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abola E. E., Sussman J. L., Prilusky J., Manning N. O. Protein Data Bank archives of three-dimensional macromolecular structures. Methods Enzymol. 1997;277:556–571. doi: 10.1016/s0076-6879(97)77031-9. [DOI] [PubMed] [Google Scholar]
  2. Bisig D. A., Di Iorio E. E., Diederichs K., Winterhalter K. H., Piontek K. Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-A resolution. Phe29(B10) accounts for its unusual ligand binding properties. J Biol Chem. 1995 Sep 1;270(35):20754–20762. doi: 10.1074/jbc.270.35.20754. [DOI] [PubMed] [Google Scholar]
  3. Bolognesi M., Bordo D., Rizzi M., Tarricone C., Ascenzi P. Nonvertebrate hemoglobins: structural bases for reactivity. Prog Biophys Mol Biol. 1997;68(1):29–68. doi: 10.1016/s0079-6107(97)00017-5. [DOI] [PubMed] [Google Scholar]
  4. Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
  5. Chance B., Angiolillo P., Yang E. K., Powers L. Identification and assay of synchrotron radiation-induced alterations on metalloenzymes and proteins. FEBS Lett. 1980 Apr 7;112(2):178–182. doi: 10.1016/0014-5793(80)80174-8. [DOI] [PubMed] [Google Scholar]
  6. Conti E., Moser C., Rizzi M., Mattevi A., Lionetti C., Coda A., Ascenzi P., Brunori M., Bolognesi M. X-ray crystal structure of ferric Aplysia limacina myoglobin in different liganded states. J Mol Biol. 1993 Oct 5;233(3):498–508. doi: 10.1006/jmbi.1993.1527. [DOI] [PubMed] [Google Scholar]
  7. Eriksson M., Jordan A., Eklund H. Structure of Salmonella typhimurium nrdF ribonucleotide reductase in its oxidized and reduced forms. Biochemistry. 1998 Sep 22;37(38):13359–13369. doi: 10.1021/bi981380s. [DOI] [PubMed] [Google Scholar]
  8. Evans S. V., Sishta B. P., Mauk A. G., Brayer G. D. Three-dimensional structure of cyanomet-sulfmyoglobin C. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4723–4726. doi: 10.1073/pnas.91.11.4723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukuyama K., Kunishima N., Amada F., Kubota T., Matsubara H. Crystal structures of cyanide- and triiodide-bound forms of Arthromyces ramosus peroxidase at different pH values. Perturbations of active site residues and their implication in enzyme catalysis. J Biol Chem. 1995 Sep 15;270(37):21884–21892. doi: 10.1074/jbc.270.37.21884. [DOI] [PubMed] [Google Scholar]
  10. Giardina B., Ascenzi P., Clementi M. E., De Sanctis G., Rizzi M., Coletta M. Functional modulation by lactate of myoglobin. A monomeric allosteric hemoprotein. J Biol Chem. 1996 Jul 19;271(29):16999–17001. doi: 10.1074/jbc.271.29.16999. [DOI] [PubMed] [Google Scholar]
  11. Honzatko R. B., Hendrickson W. A., Love W. E. Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus. J Mol Biol. 1985 Jul 5;184(1):147–164. doi: 10.1016/0022-2836(85)90049-x. [DOI] [PubMed] [Google Scholar]
  12. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  13. Kraus D. W., Wittenberg J. B. Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J Biol Chem. 1990 Sep 25;265(27):16043–16053. [PubMed] [Google Scholar]
  14. Kraus D. W., Wittenberg J. B., Lu J. F., Peisach J. Hemoglobins of the Lucina pectinata/bacteria symbiosis. II. An electron paramagnetic resonance and optical spectral study of the ferric proteins. J Biol Chem. 1990 Sep 25;265(27):16054–16059. [PubMed] [Google Scholar]
  15. Lionetti C., Guanziroli M. G., Frigerio F., Ascenzi P., Bolognesi M. X-ray crystal structure of the ferric sperm whale myoglobin: imidazole complex at 2.0 A resolution. J Mol Biol. 1991 Feb 5;217(3):409–412. doi: 10.1016/0022-2836(91)90744-q. [DOI] [PubMed] [Google Scholar]
  16. Nardini M., Tarricone C., Rizzi M., Lania A., Desideri A., De Sanctis G., Coletta M., Petruzzelli R., Ascenzi P., Coda A. Reptile heme protein structure: X-ray crystallographic study of the aquo-met and cyano-met derivatives of the loggerhead sea turtle (Caretta caretta) myoglobin at 2.0 A resolution. J Mol Biol. 1995 Mar 31;247(3):459–465. doi: 10.1006/jmbi.1994.0153. [DOI] [PubMed] [Google Scholar]
  17. Neya S., Funasaki N., Igarashi N., Ikezaki A., Sato T., Imai K., Tanaka N. Structure and function of 6,7-dicarboxyheme-substituted myoglobin. Biochemistry. 1998 Apr 21;37(16):5487–5493. doi: 10.1021/bi972632c. [DOI] [PubMed] [Google Scholar]
  18. Neya S., Funasaki N., Sato T., Igarashi N., Tanaka N. Structural analysis of the myoglobin reconstituted with iron porphine. J Biol Chem. 1993 Apr 25;268(12):8935–8942. doi: 10.2210/pdb2cmm/pdb. [DOI] [PubMed] [Google Scholar]
  19. Nguyen B. D., Zhao X., Vyas K., La Mar G. N., Lile R. A., Brucker E. A., Phillips G. N., Jr, Olson J. S., Wittenberg J. B. Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lucina pectinata. J Biol Chem. 1998 Apr 17;273(16):9517–9526. doi: 10.1074/jbc.273.16.9517. [DOI] [PubMed] [Google Scholar]
  20. Paoli M., Dodson G., Liddington R. C., Wilkinson A. J. Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. J Mol Biol. 1997 Aug 15;271(2):161–167. doi: 10.1006/jmbi.1997.1180. [DOI] [PubMed] [Google Scholar]
  21. Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
  22. Rizzi M., Wittenberg J. B., Coda A., Ascenzi P., Bolognesi M. Structural bases for sulfide recognition in Lucina pectinata hemoglobin I. J Mol Biol. 1996 Apr 26;258(1):1–5. doi: 10.1006/jmbi.1996.0228. [DOI] [PubMed] [Google Scholar]
  23. Rizzi M., Wittenberg J. B., Coda A., Fasano M., Ascenzi P., Bolognesi M. Structure of the sulfide-reactive hemoglobin from the clam Lucina pectinata. Crystallographic analysis at 1.5 A resolution. J Mol Biol. 1994 Nov 18;244(1):86–99. doi: 10.1006/jmbi.1994.1706. [DOI] [PubMed] [Google Scholar]
  24. Schlichting I., Berendzen J., Phillips G. N., Jr, Sweet R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature. 1994 Oct 27;371(6500):808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
  25. Steigemann W., Weber E. Structure of erythrocruorin in different ligand states refined at 1.4 A resolution. J Mol Biol. 1979 Jan 25;127(3):309–338. doi: 10.1016/0022-2836(79)90332-2. [DOI] [PubMed] [Google Scholar]
  26. Stroppolo M. E., Nuzzo S., Pesce A., Rosano C., Battistoni A., Bolognesi M., Mobilio S., Desideri A. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Biochem Biophys Res Commun. 1998 Aug 28;249(3):579–582. doi: 10.1006/bbrc.1998.9199. [DOI] [PubMed] [Google Scholar]
  27. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  28. Teng T. Y., Srajer V., Moffat K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat Struct Biol. 1994 Oct;1(10):701–705. doi: 10.1038/nsb1094-701. [DOI] [PubMed] [Google Scholar]
  29. Weichsel A., Andersen J. F., Champagne D. E., Walker F. A., Montfort W. R. Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat Struct Biol. 1998 Apr;5(4):304–309. doi: 10.1038/nsb0498-304. [DOI] [PubMed] [Google Scholar]
  30. Wittenberg J. B., Wittenberg B. A. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu Rev Biophys Biophys Chem. 1990;19:217–241. doi: 10.1146/annurev.bb.19.060190.001245. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES