Abstract
This study develops a model for a single cell electroporated by an external electric field and uses it to investigate the effects of shock strength and rest potential on the transmembrane potential V(m) and pore density N around the cell. As compared to the induced potential predicted by resistive-capacitive theory, the model of electroporation predicts a smaller magnitude of V(m) throughout the cell. Both V(m) and N are symmetric about the equator with the same value at both poles of the cell. Larger shocks do not increase the maximum magnitude of V(m) because more pores form to shunt the excess stimulus current across the membrane. In addition, the value of the rest potential does not affect V(m) around the cell because the electroporation current is several orders of magnitude larger than the ionic current that supports the rest potential. Once the field is removed, the shock-induced V(m) discharges within 2 micros, but the pores persist in the membrane for several seconds. Complete resealing to preshock conditions requires approximately 20 s. These results agree qualitatively and quantitatively with the experimental data reported by Kinosita and coworkers for unfertilized sea urchin eggs exposed to large electric fields.
Full Text
The Full Text of this article is available as a PDF (138.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguel F., Debruin K. A., Krassowska W., Trayanova N. A. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol. 1999 May;10(5):701–714. doi: 10.1111/j.1540-8167.1999.tb00247.x. [DOI] [PubMed] [Google Scholar]
- Barnett A. The current-voltage relation of an aqueous pore in a lipid bilayer membrane. Biochim Biophys Acta. 1990 Jun 11;1025(1):10–14. doi: 10.1016/0005-2736(90)90184-p. [DOI] [PubMed] [Google Scholar]
- Benz R., Beckers F., Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979 Jul 16;48(2):181–204. doi: 10.1007/BF01872858. [DOI] [PubMed] [Google Scholar]
- Benz R., Hancock R. E. Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochim Biophys Acta. 1981 Aug 20;646(2):298–308. doi: 10.1016/0005-2736(81)90336-9. [DOI] [PubMed] [Google Scholar]
- Chambers E. L., de Armendi J. Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. Exp Cell Res. 1979 Aug;122(1):203–218. doi: 10.1016/0014-4827(79)90575-5. [DOI] [PubMed] [Google Scholar]
- DeBruin K. A., Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng. 1998 Jul-Aug;26(4):584–596. doi: 10.1114/1.101. [DOI] [PubMed] [Google Scholar]
- Djuzenova C. S., Zimmermann U., Frank H., Sukhorukov V. L., Richter E., Fuhr G. Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta. 1996 Oct 23;1284(2):143–152. doi: 10.1016/s0005-2736(96)00119-8. [DOI] [PubMed] [Google Scholar]
- Freeman S. A., Wang M. A., Weaver J. C. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J. 1994 Jul;67(1):42–56. doi: 10.1016/S0006-3495(94)80453-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabriel B., Teissié J. Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J. 1997 Nov;73(5):2630–2637. doi: 10.1016/S0006-3495(97)78292-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genco I., Gliozzi A., Relini A., Robello M., Scalas E. Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta. 1993 Jun 18;1149(1):10–18. doi: 10.1016/0005-2736(93)90019-v. [DOI] [PubMed] [Google Scholar]
- Glaser R. W., Leikin S. L., Chernomordik L. V., Pastushenko V. F., Sokirko A. I. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988 May 24;940(2):275–287. doi: 10.1016/0005-2736(88)90202-7. [DOI] [PubMed] [Google Scholar]
- Gross D., Loew L. M., Webb W. W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986 Aug;50(2):339–348. doi: 10.1016/S0006-3495(86)83467-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibino M., Itoh H., Kinosita K., Jr Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J. 1993 Jun;64(6):1789–1800. doi: 10.1016/S0006-3495(93)81550-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibino M., Shigemori M., Itoh H., Nagayama K., Kinosita K., Jr Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J. 1991 Jan;59(1):209–220. doi: 10.1016/S0006-3495(91)82212-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. L., Jones R. E., Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Physiol. 1987 Aug;253(2 Pt 2):H480–H486. doi: 10.1152/ajpheart.1987.253.2.H480. [DOI] [PubMed] [Google Scholar]
- Jones J. L., Lepeschkin E., Jones R. E., Rush S. Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol. 1978 Aug;235(2):H214–H222. doi: 10.1152/ajpheart.1978.235.2.H214. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Ashikawa I., Saita N., Yoshimura H., Itoh H., Nagayama K., Ikegami A. Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J. 1988 Jun;53(6):1015–1019. doi: 10.1016/S0006-3495(88)83181-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinosita K., Jr, Itoh H., Ishiwata S., Hirano K., Nishizaka T., Hayakawa T. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J Cell Biol. 1991 Oct;115(1):67–73. doi: 10.1083/jcb.115.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinosita K., Jr, Tsong T. Y. Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta. 1979 Jul 5;554(2):479–497. doi: 10.1016/0005-2736(79)90386-9. [DOI] [PubMed] [Google Scholar]
- Knisley S. B., Grant A. O. Asymmetrical electrically induced injury of rabbit ventricular myocytes. J Mol Cell Cardiol. 1995 May;27(5):1111–1122. doi: 10.1016/0022-2828(95)90047-0. [DOI] [PubMed] [Google Scholar]
- Krassowska W. Effects of electroporation on transmembrane potential induced by defibrillation shocks. Pacing Clin Electrophysiol. 1995 Sep;18(9 Pt 1):1644–1660. doi: 10.1111/j.1540-8159.1995.tb06986.x. [DOI] [PubMed] [Google Scholar]
- Krassowska W., Neu J. C. Response of a single cell to an external electric field. Biophys J. 1994 Jun;66(6):1768–1776. doi: 10.1016/S0006-3495(94)80971-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lojewska Z., Farkas D. L., Ehrenberg B., Loew L. M. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys J. 1989 Jul;56(1):121–128. doi: 10.1016/S0006-3495(89)82657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehrle W., Hampp R., Zimmermann U. Electric pulse induced membrane permeabilization. Spatial orientation and kinetics of solute efflux in freely suspended and dielectrophoretically aligned plant mesophyll protoplasts. Biochim Biophys Acta. 1989 Jan 30;978(2):267–275. doi: 10.1016/0005-2736(89)90124-7. [DOI] [PubMed] [Google Scholar]
- Rosenberg B., Jendrasiak G. L. Semiconductive properties of lipids and their possible relationship to lipid bilayer conductivity. Chem Phys Lipids. 1968 Feb;2(1):47–54. doi: 10.1016/0009-3084(68)90034-0. [DOI] [PubMed] [Google Scholar]
- Rossignol D. P., Decker G. L., Lennarz W. J., Tsong T. Y., Teissie J. Induction of calcium-dependent, localized cortical granule breakdown in sea-urchin eggs by voltage pulsation. Biochim Biophys Acta. 1983 Dec 19;763(4):346–355. doi: 10.1016/0167-4889(83)90096-4. [DOI] [PubMed] [Google Scholar]
- Tekle E., Astumian R. D., Chock P. B. Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun. 1990 Oct 15;172(1):282–287. doi: 10.1016/s0006-291x(05)80206-2. [DOI] [PubMed] [Google Scholar]
- Tekle E., Astumian R. D., Chock P. B. Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11512–11516. doi: 10.1073/pnas.91.24.11512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teruel M. N., Meyer T. Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J. 1997 Oct;73(4):1785–1796. doi: 10.1016/S0006-3495(97)78209-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tovar O., Tung L. Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am J Physiol. 1992 Oct;263(4 Pt 2):H1128–H1136. doi: 10.1152/ajpheart.1992.263.4.H1128. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Electroporation of cell membranes. Biophys J. 1991 Aug;60(2):297–306. doi: 10.1016/S0006-3495(91)82054-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tung L., Tovar O., Neunlist M., Jain S. K., O'Neill R. J. Effects of strong electrical shock on cardiac muscle tissue. Ann N Y Acad Sci. 1994 May 31;720:160–175. doi: 10.1111/j.1749-6632.1994.tb30444.x. [DOI] [PubMed] [Google Scholar]
- Zhang L., Li L., Hoffmann G. A., Hoffman R. M. Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochem Biophys Res Commun. 1996 Mar 27;220(3):633–636. doi: 10.1006/bbrc.1996.0455. [DOI] [PubMed] [Google Scholar]
- Zhou X., Smith W. M., Rollins D. L., Ideker R. E. Transmembrane potential changes caused by shocks in guinea pig papillary muscle. Am J Physiol. 1996 Dec;271(6 Pt 2):H2536–H2546. doi: 10.1152/ajpheart.1996.271.6.H2536. [DOI] [PubMed] [Google Scholar]
- Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta. 1982 Nov 30;694(3):227–277. doi: 10.1016/0304-4157(82)90007-7. [DOI] [PubMed] [Google Scholar]