Abstract
The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions.
Full Text
The Full Text of this article is available as a PDF (523.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenbach C., Yang K., Farrens D. L., Farahbakhsh Z. T., Khorana H. G., Hubbell W. L. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry. 1996 Sep 24;35(38):12470–12478. doi: 10.1021/bi960849l. [DOI] [PubMed] [Google Scholar]
- Arnis S., Fahmy K., Hofmann K. P., Sakmar T. P. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem. 1994 Sep 30;269(39):23879–23881. [PubMed] [Google Scholar]
- Arnis S., Hofmann K. P. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7849–7853. doi: 10.1073/pnas.90.16.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett N., Michel-Villaz M., Dupont Y. Cyanine dye measurement of a light-induced transient membrane potential associated with the metarhodopsin II intermediate in rod-outer-segment membranes. Eur J Biochem. 1980 Oct;111(1):105–110. doi: 10.1111/j.1432-1033.1980.tb06080.x. [DOI] [PubMed] [Google Scholar]
- Bennett N. Optical study of the light-induced protonation changes associated with the metarhodopson II intermediate in rod-outer-segment membranes. Eur J Biochem. 1980 Oct;111(1):99–103. doi: 10.1111/j.1432-1033.1980.tb06079.x. [DOI] [PubMed] [Google Scholar]
- Bezanilla F., Stefani E. Voltage-dependent gating of ionic channels. Annu Rev Biophys Biomol Struct. 1994;23:819–846. doi: 10.1146/annurev.bb.23.060194.004131. [DOI] [PubMed] [Google Scholar]
- Birge R. R., Einterz C. M., Knapp H. M., Murray L. P. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Biophys J. 1988 Mar;53(3):367–385. doi: 10.1016/S0006-3495(88)83114-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bownds D. Site of attachment of retinal in rhodopsin. Nature. 1967 Dec 23;216(5121):1178–1181. doi: 10.1038/2161178a0. [DOI] [PubMed] [Google Scholar]
- Cafiso D. S., Hubbell W. L. Light-induced interfacial potentials in photoreceptor membranes. Biophys J. 1980 May;30(2):243–263. doi: 10.1016/S0006-3495(80)85092-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone R. A. Early receptor potential: photoreversible charge displacement in rhodopsin. Science. 1967 Mar 3;155(3766):1128–1131. doi: 10.1126/science.155.3766.1128. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Kalamkarov G. R., Kaulen A. D., Ostrovsky M. A., Skulachev V. P. Fast stages of photoelectric processes in biological membranes. II. Visual rhodopsin. Eur J Biochem. 1981 Jul;117(3):471–481. doi: 10.1111/j.1432-1033.1981.tb06362.x. [DOI] [PubMed] [Google Scholar]
- Ebrey T. G. The thermal decay of the intermediates of rhodopsin in situ. Vision Res. 1968 Aug;8(8):965–982. doi: 10.1016/0042-6989(68)90071-0. [DOI] [PubMed] [Google Scholar]
- Fahmy K., Jäger F., Beck M., Zvyaga T. A., Sakmar T. P., Siebert F. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10206–10210. doi: 10.1073/pnas.90.21.10206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fahmy K., Sakmar T. P. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry. 1993 Jul 20;32(28):7229–7236. doi: 10.1021/bi00079a020. [DOI] [PubMed] [Google Scholar]
- Farahbakhsh Z. T., Hideg K., Hubbell W. L. Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science. 1993 Nov 26;262(5138):1416–1419. doi: 10.1126/science.8248781. [DOI] [PubMed] [Google Scholar]
- Farahbakhsh Z. T., Ridge K. D., Khorana H. G., Hubbell W. L. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry. 1995 Jul 11;34(27):8812–8819. doi: 10.1021/bi00027a033. [DOI] [PubMed] [Google Scholar]
- Ganter U. M., Gärtner W., Siebert F. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Biochemistry. 1988 Sep 20;27(19):7480–7488. doi: 10.1021/bi00419a046. [DOI] [PubMed] [Google Scholar]
- Ganter U. M., Schmid E. D., Perez-Sala D., Rando R. R., Siebert F. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry. 1989 Jul 11;28(14):5954–5962. doi: 10.1021/bi00440a036. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Han M., Lin S. W., Minkova M., Smith S. O., Sakmar T. P. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. J Biol Chem. 1996 Dec 13;271(50):32337–32342. doi: 10.1074/jbc.271.50.32337. [DOI] [PubMed] [Google Scholar]
- Hestrin S., Korenbrot J. I. Activation kinetics of retinal cones and rods: response to intense flashes of light. J Neurosci. 1990 Jun;10(6):1967–1973. doi: 10.1523/JNEUROSCI.10-06-01967.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstrate P., Lindau M., Rüppel H. On the origin and the signal-shaping mechanism of the fast photosignal in the vertebrate retina. Biophys J. 1982 Apr;38(1):53–61. doi: 10.1016/S0006-3495(82)84530-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin A. L., Obryan P. M. Internal recording of the early receptor potential in turtle cones. J Physiol. 1977 Jun;267(3):737–766. doi: 10.1113/jphysiol.1977.sp011836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong K., Hubbell W. L. Lipid requirements for Rhodopsin regenerability. Biochemistry. 1973 Oct 23;12(22):4517–4523. doi: 10.1021/bi00746a033. [DOI] [PubMed] [Google Scholar]
- Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
- Jones G. J., Crouch R. K., Wiggert B., Cornwall M. C., Chader G. J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9606–9610. doi: 10.1073/pnas.86.23.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jäger F., Fahmy K., Sakmar T. P., Siebert F. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Biochemistry. 1994 Sep 13;33(36):10878–10882. doi: 10.1021/bi00202a005. [DOI] [PubMed] [Google Scholar]
- Jäger S., Han M., Lewis J. W., Szundi I., Sakmar T. P., Kliger D. S. Properties of early photolysis intermediates of rhodopsin are affected by glycine 121 and phenylalanine 261. Biochemistry. 1997 Sep 30;36(39):11804–11810. doi: 10.1021/bi971122f. [DOI] [PubMed] [Google Scholar]
- Kersting U., Joha H., Steigner W., Gassner B., Gstraunthaler G., Pfaller W., Oberleithner H. Fusion of cultured dog kidney (MDCK) cells: I. Technique, fate of plasma membranes and of cell nuclei. J Membr Biol. 1989 Oct;111(1):37–48. doi: 10.1007/BF01869207. [DOI] [PubMed] [Google Scholar]
- Kibelbek J., Mitchell D. C., Beach J. M., Litman B. J. Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. Biochemistry. 1991 Jul 9;30(27):6761–6768. doi: 10.1021/bi00241a019. [DOI] [PubMed] [Google Scholar]
- Klinger A. L., Braiman M. S. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra. Biophys J. 1992 Nov;63(5):1244–1255. doi: 10.1016/S0006-3495(92)81700-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- König B., Arendt A., McDowell J. H., Kahlert M., Hargrave P. A., Hofmann K. P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. doi: 10.1073/pnas.86.18.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamola A. A., Yamane T., Zipp A. Effects of detergents and high pressures upon the metarhodopsin I--metarhodopsin II equilibrium. Biochemistry. 1974 Feb 12;13(4):738–745. doi: 10.1021/bi00701a016. [DOI] [PubMed] [Google Scholar]
- Lewis J. W., Einterz C. M., Hug S. J., Kliger D. S. Transition dipole orientations in the early photolysis intermediates of rhodopsin. Biophys J. 1989 Dec;56(6):1101–1111. doi: 10.1016/S0006-3495(89)82758-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis J. W., Kliger D. S. Photointermediates of visual pigments. J Bioenerg Biomembr. 1992 Apr;24(2):201–210. doi: 10.1007/BF00762678. [DOI] [PubMed] [Google Scholar]
- Liebman P. A., Jagger W. S., Kaplan M. W., Bargoot F. G. Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature. 1974 Sep 6;251(5470):31–36. doi: 10.1038/251031a0. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Bering H. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors. J Gen Physiol. 1977 Nov;70(5):621–633. doi: 10.1085/jgp.70.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longstaff C., Calhoon R. D., Rando R. R. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4209–4213. doi: 10.1073/pnas.83.12.4209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino C. L., Taylor W. R., Baylor D. A. Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. J Physiol. 1991 Oct;442:761–780. doi: 10.1113/jphysiol.1991.sp018818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolskee R. F., McHendry-Rinde B., Horn R. Panning transfected cells for electrophysiological studies. Biotechniques. 1993 Nov;15(5):906–911. [PubMed] [Google Scholar]
- Misra S. Contribution of proton release to the B2 photocurrent of bacteriorhodopsin. Biophys J. 1998 Jul;75(1):382–388. doi: 10.1016/S0006-3495(98)77522-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyaguchi K., Kuo C. H., Miki N., Hashimoto P. H. Topography of opsin within disk and plasma membranes revealed by a rapid-freeze deep-etch technique. J Neurocytol. 1992 Nov;21(11):807–819. doi: 10.1007/BF01237906. [DOI] [PubMed] [Google Scholar]
- Molday R. S., MacKenzie D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry. 1983 Feb 1;22(3):653–660. doi: 10.1021/bi00272a020. [DOI] [PubMed] [Google Scholar]
- Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990 Oct 16;29(41):9746–9752. doi: 10.1021/bi00493a034. [DOI] [PubMed] [Google Scholar]
- Nathans J. Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry. 1990 Jan 30;29(4):937–942. doi: 10.1021/bi00456a013. [DOI] [PubMed] [Google Scholar]
- Nathans J., Weitz C. J., Agarwal N., Nir I., Papermaster D. S. Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: spectrophotometry and subcellular localization. Vision Res. 1989;29(8):907–914. doi: 10.1016/0042-6989(89)90105-3. [DOI] [PubMed] [Google Scholar]
- Ostroy S. E. Hydrogen ion changes of rhodopsin. pK changes and the thermal decay of metarhodopsin II380. Arch Biochem Biophys. 1974 Sep;164(1):275–284. doi: 10.1016/0003-9861(74)90032-0. [DOI] [PubMed] [Google Scholar]
- Parkes J. H., Liebman P. A. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. Biochemistry. 1984 Oct 9;23(21):5054–5061. doi: 10.1021/bi00316a035. [DOI] [PubMed] [Google Scholar]
- Pugh E. N. Rhodopsin flash photolysis in man. J Physiol. 1975 Jun;248(2):393–412. doi: 10.1113/jphysiol.1975.sp010981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rath P., DeCaluwé L. L., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry. 1993 Oct 5;32(39):10277–10282. doi: 10.1021/bi00090a001. [DOI] [PubMed] [Google Scholar]
- Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets M. F., Kyle J. W., Krueger S., Hanck D. A. Optimization of a mammalian expression system for the measurement of sodium channel gating currents. Am J Physiol. 1996 Sep;271(3 Pt 1):C1001–C1006. doi: 10.1152/ajpcell.1996.271.3.C1001. [DOI] [PubMed] [Google Scholar]
- Shieh T., Han M., Sakmar T. P., Smith S. O. The steric trigger in rhodopsin activation. J Mol Biol. 1997 Jun 13;269(3):373–384. doi: 10.1006/jmbi.1997.1035. [DOI] [PubMed] [Google Scholar]
- Simmeth R., Rayfield G. W. Evidence that the photoelectric response of bacteriorhodopsin occurs in less than 5 picoseconds. Biophys J. 1990 May;57(5):1099–1101. doi: 10.1016/S0006-3495(90)82629-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spalink J. D., Stieve H. Direct correlation between the R2 component of the early receptor potential and the formation of metarhodopsin II in the excised bovine retina. Biophys Struct Mech. 1980;6(2):171–174. doi: 10.1007/BF00535753. [DOI] [PubMed] [Google Scholar]
- Sung C. H., Schneider B. G., Agarwal N., Papermaster D. S., Nathans J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8840–8844. doi: 10.1073/pnas.88.19.8840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szuts E. Z., Harosi F. I. Solubility of retinoids in water. Arch Biochem Biophys. 1991 Jun;287(2):297–304. doi: 10.1016/0003-9861(91)90482-x. [DOI] [PubMed] [Google Scholar]
- Thorgeirsson T. E., Lewis J. W., Wallace-Williams S. E., Kliger D. S. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry. 1993 Dec 21;32(50):13861–13872. doi: 10.1021/bi00213a015. [DOI] [PubMed] [Google Scholar]
- Trissl H. W. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates. Methods Enzymol. 1982;81:431–439. doi: 10.1016/s0076-6879(82)81060-4. [DOI] [PubMed] [Google Scholar]
- Trissl H. W. On the rise time of the R1-component of the "early receptor potential": evidence for a fast light-induced charge separation in rhodopsin. Biophys Struct Mech. 1982;8(3):213–230. doi: 10.1007/BF00535460. [DOI] [PubMed] [Google Scholar]
- WALD G., BROWN P. K. Human rhodopsin. Science. 1958 Jan 31;127(3292):222–226. doi: 10.1126/science.127.3292.222. [DOI] [PubMed] [Google Scholar]
- WILLIAMS T. P. PHOTOREVERSAL OF RHODOPSIN BLEACHING. J Gen Physiol. 1964 Mar;47:679–689. doi: 10.1085/jgp.47.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitz C. J., Nathans J. Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron. 1992 Mar;8(3):465–472. doi: 10.1016/0896-6273(92)90274-h. [DOI] [PubMed] [Google Scholar]
- Weitz C. J., Nathans J. Rhodopsin activation: effects on the metarhodopsin I-metarhodopsin II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane segments. Biochemistry. 1993 Dec 28;32(51):14176–14182. doi: 10.1021/bi00214a016. [DOI] [PubMed] [Google Scholar]
- Williams T. P. Rhodopsin bleaching: relative effectiveness of high and low intensity flashes. Vision Res. 1965 Dec;5(11):633–638. doi: 10.1016/0042-6989(65)90036-2. [DOI] [PubMed] [Google Scholar]
- Zhukovsky E. A., Oprian D. D. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. doi: 10.1126/science.2573154. [DOI] [PubMed] [Google Scholar]
- Zylka M. J., Schnapp B. J. Optimized filter set and viewing conditions for the S65T mutant of GFP in living cells. Biotechniques. 1996 Aug;21(2):220-1, 224-6. doi: 10.2144/96212bm11. [DOI] [PubMed] [Google Scholar]
- von Sengbusch G., Stieve H. Flash photolysis of rhodopsin. I. Measurements on bovine rod outer segments. Z Naturforsch B. 1971 May;26(5):488–489. [PubMed] [Google Scholar]