Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1562–1576. doi: 10.1016/S0006-3495(99)77004-9

A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices.

G Bertucat 1, R Lavery 1, C Prévost 1
PMCID: PMC1300444  PMID: 10465767

Abstract

A number of studies have concluded that strand exchange between a RecA-complexed DNA single strand and a homologous DNA duplex occurs via a single-strand invasion of the minor groove of the duplex. Using molecular modeling, we have previously demonstrated the possibility of forming a parallel triple helix in which the single strand interacts with the intact duplex in the minor groove, via novel base interactions (Bertucat et al., J. Biomol. Struct. Dynam. 16:535-546). This triplex is stabilized by the stretching and unwinding imposed by RecA. In the present study, we show that the bases within this triplex are appropriately placed to undergo strand exchange. Strand exchange is found to be exothermic and to result in a triple helix in which the new single strand occupies the major groove. This structure, which can be equated to so-called R-form DNA, can be further stabilized by compression and rewinding. We are consequently able to propose a detailed, atomic-scale model of RecA-promoted strand exchange. This model, which is supported by a variety of experimental data, suggests that the role of RecA is principally to prepare the single strand for its future interactions, to guide a minor groove attack on duplex DNA, and to stabilize the resulting, stretched triplex, which intrinsically favors strand exchange. We also discuss how this mechanism can incorporate homologous recognition.

Full Text

The Full Text of this article is available as a PDF (322.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzuma K. No sliding during homology search by RecA protein. J Biol Chem. 1998 Nov 20;273(47):31565–31573. doi: 10.1074/jbc.273.47.31565. [DOI] [PubMed] [Google Scholar]
  2. Adzuma K. Stable synapsis of homologous DNA molecules mediated by the Escherichia coli RecA protein involves local exchange of DNA strands. Genes Dev. 1992 Sep;6(9):1679–1694. doi: 10.1101/gad.6.9.1679. [DOI] [PubMed] [Google Scholar]
  3. Amos L. A., Cross R. A. Structure and dynamics of molecular motors. Curr Opin Struct Biol. 1997 Apr;7(2):239–246. doi: 10.1016/s0959-440x(97)80032-2. [DOI] [PubMed] [Google Scholar]
  4. Baliga R., Singleton J. W., Dervan P. B. RecA.oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10393–10397. doi: 10.1073/pnas.92.22.10393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baumann P., West S. C. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998 Jul;23(7):247–251. doi: 10.1016/s0968-0004(98)01232-8. [DOI] [PubMed] [Google Scholar]
  6. Bazemore L. R., Folta-Stogniew E., Takahashi M., Radding C. M. RecA tests homology at both pairing and strand exchange. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11863–11868. doi: 10.1073/pnas.94.22.11863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bazemore L. R., Takahashi M., Radding C. M. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J Biol Chem. 1997 Jun 6;272(23):14672–14682. doi: 10.1074/jbc.272.23.14672. [DOI] [PubMed] [Google Scholar]
  8. Bedale W. A., Cox M. Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA protein-mediated DNA strand exchange. J Biol Chem. 1996 Mar 8;271(10):5725–5732. doi: 10.1074/jbc.271.10.5725. [DOI] [PubMed] [Google Scholar]
  9. Bertucat G., Lavery R., Prévost C. A model for parallel triple helix formation by RecA: single-single association with a homologous duplex via the minor groove. J Biomol Struct Dyn. 1998 Dec;16(3):535–546. doi: 10.1080/07391102.1998.10508268. [DOI] [PubMed] [Google Scholar]
  10. Bianchi M. E., Radding C. M. Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell. 1983 Dec;35(2 Pt 1):511–520. doi: 10.1016/0092-8674(83)90185-x. [DOI] [PubMed] [Google Scholar]
  11. Burnett B., Rao B. J., Jwang B., Reddy G., Radding C. M. Resolution of the three-stranded recombination intermediate made by RecA protein. An essential role of ATP hydrolysis. J Mol Biol. 1994 May 13;238(4):540–554. doi: 10.1006/jmbi.1994.1313. [DOI] [PubMed] [Google Scholar]
  12. Camerini-Otero R. D., Hsieh P. Parallel DNA triplexes, homologous recombination, and other homology-dependent DNA interactions. Cell. 1993 Apr 23;73(2):217–223. doi: 10.1016/0092-8674(93)90224-e. [DOI] [PubMed] [Google Scholar]
  13. Chiu S. K., Rao B. J., Story R. M., Radding C. M. Interactions of three strands in joints made by RecA protein. Biochemistry. 1993 Dec 7;32(48):13146–13155. doi: 10.1021/bi00211a025. [DOI] [PubMed] [Google Scholar]
  14. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  15. Cox M. M. Why does RecA protein hydrolyse ATP? Trends Biochem Sci. 1994 May;19(5):217–222. doi: 10.1016/0968-0004(94)90025-6. [DOI] [PubMed] [Google Scholar]
  16. Dagneaux C., Porumb H., Liquier J., Takahashi M., Taillandier E. Conformations of three-stranded DNA structures formed in presence and in absence of the RecA protein. J Biomol Struct Dyn. 1995 Dec;13(3):465–470. doi: 10.1080/07391102.1995.10508856. [DOI] [PubMed] [Google Scholar]
  17. Dagneaux C., Shchyolkina A. K., Liquier J., Florentiev V. L., Taillandier E. A triple helix obtained by specific recognition of all 4 bases in duplex DNA can adopt a collapsed or an extended form. C R Acad Sci III. 1995 May;318(5):559–562. [PubMed] [Google Scholar]
  18. DasGupta C., Radding C. M. Lower fidelity of RecA protein catalysed homologous pairing with a superhelical substrate. Nature. 1982 Jan 7;295(5844):71–73. doi: 10.1038/295071a0. [DOI] [PubMed] [Google Scholar]
  19. DasGupta C., Radding C. M. Polar branch migration promoted by recA protein: effect of mismatched base pairs. Proc Natl Acad Sci U S A. 1982 Feb;79(3):762–766. doi: 10.1073/pnas.79.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Di Capua E., Müller B. The accessibility of DNA to dimethylsulfate in complexes with recA protein. EMBO J. 1987 Aug;6(8):2493–2498. doi: 10.1002/j.1460-2075.1987.tb02531.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DiCapua E., Schnarr M., Ruigrok R. W., Lindner P., Timmins P. A. Complexes of RecA protein in solution. A study by small angle neutron scattering. J Mol Biol. 1990 Jul 20;214(2):557–570. doi: 10.1016/0022-2836(90)90198-U. [DOI] [PubMed] [Google Scholar]
  22. Ellouze C., Kim H. K., Maeshima K., Tuite E., Morimatsu K., Horii T., Mortensen K., Nordén B., Takahashi M. Nucleotide cofactor-dependent structural change of Xenopus laevis Rad51 protein filament detected by small-angle neutron scattering measurements in solution. Biochemistry. 1997 Nov 4;36(44):13524–13529. doi: 10.1021/bi971000n. [DOI] [PubMed] [Google Scholar]
  23. Ellouze C., Nordén B., Takahashi M. Dissociation of non-complementary second DNA from RecA filament without ATP hydrolysis: mechanism of search for homologous DNA. J Biochem. 1997 Jun;121(6):1070–1075. doi: 10.1093/oxfordjournals.jbchem.a021696. [DOI] [PubMed] [Google Scholar]
  24. Ellouze C., Takahashi M., Wittung P., Mortensen K., Schnarr M., Nordén B. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering. Eur J Biochem. 1995 Oct 15;233(2):579–583. doi: 10.1111/j.1432-1033.1995.579_2.x. [DOI] [PubMed] [Google Scholar]
  25. Flory J., Tsang S. S., Muniyappa K. Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7026–7030. doi: 10.1073/pnas.81.22.7026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gumbs O. H., Shaner S. L. Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA. Biochemistry. 1998 Aug 18;37(33):11692–11706. doi: 10.1021/bi980646s. [DOI] [PubMed] [Google Scholar]
  27. Heuser J., Griffith J. Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy. J Mol Biol. 1989 Dec 5;210(3):473–484. doi: 10.1016/0022-2836(89)90124-1. [DOI] [PubMed] [Google Scholar]
  28. Howard-Flanders P., West S. C., Stasiak A. Role of RecA protein spiral filaments in genetic recombination. Nature. 1984 May 17;309(5965):215–219. doi: 10.1038/309215a0. [DOI] [PubMed] [Google Scholar]
  29. Hsieh P., Camerini-Otero C. S., Camerini-Otero R. D. Pairing of homologous DNA sequences by proteins: evidence for three-stranded DNA. Genes Dev. 1990 Nov;4(11):1951–1963. doi: 10.1101/gad.4.11.1951. [DOI] [PubMed] [Google Scholar]
  30. Jain S. K., Cox M. M., Inman R. B. Occurrence of three-stranded DNA within a RecA protein filament. J Biol Chem. 1995 Mar 3;270(9):4943–4949. doi: 10.1074/jbc.270.9.4943. [DOI] [PubMed] [Google Scholar]
  31. Kiianitsa K., Stasiak A. Helical repeat of DNA in the region of homologous pairing. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7837–7840. doi: 10.1073/pnas.94.15.7837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kim S. K., Takahashi M., Nordén B. Binding of RecA to anti-parallel poly(dA).2poly(dT) triple helix DNA. Biochim Biophys Acta. 1995 Oct 17;1264(1):129–133. doi: 10.1016/0167-4781(95)00137-6. [DOI] [PubMed] [Google Scholar]
  33. Kowalczykowski S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu Rev Biophys Biophys Chem. 1991;20:539–575. doi: 10.1146/annurev.bb.20.060191.002543. [DOI] [PubMed] [Google Scholar]
  34. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kowalczykowski S. C., Eggleston A. K. Homologous pairing and DNA strand-exchange proteins. Annu Rev Biochem. 1994;63:991–1043. doi: 10.1146/annurev.bi.63.070194.005015. [DOI] [PubMed] [Google Scholar]
  36. Kowalczykowski S. C., Krupp R. A. DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3478–3482. doi: 10.1073/pnas.92.8.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kubista M., Takahashi M., Nordén B. Stoichiometry, base orientation, and nuclease accessibility of RecA.DNA complexes seen by polarized light in flow-oriented solution. Implications for the mechanism of genetic recombination. J Biol Chem. 1990 Nov 5;265(31):18891–18897. [PubMed] [Google Scholar]
  38. Kumar K. A., Muniyappa K. Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem. 1992 Dec 5;267(34):24824–24832. [PubMed] [Google Scholar]
  39. Kurumizaka H., Shibata T. Homologous recognition by RecA protein using non-equivalent three DNA-strand-binding sites. J Biochem. 1996 Feb;119(2):216–223. doi: 10.1093/oxfordjournals.jbchem.a021224. [DOI] [PubMed] [Google Scholar]
  40. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  41. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  42. Lavery R., Sklenar H., Zakrzewska K., Pullman B. The flexibility of the nucleic acids: (II). The calculation of internal energy and applications to mononucleotide repeat DNA. J Biomol Struct Dyn. 1986 Apr;3(5):989–1014. doi: 10.1080/07391102.1986.10508478. [DOI] [PubMed] [Google Scholar]
  43. Lebrun A., Lavery R. Modeling a strand exchange tetraplex conformation. J Biomol Struct Dyn. 1995 Dec;13(3):459–464. doi: 10.1080/07391102.1995.10508855. [DOI] [PubMed] [Google Scholar]
  44. Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Leger J. F., Robert J., Bourdieu L., Chatenay D., Marko J. F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12295–12299. doi: 10.1073/pnas.95.21.12295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Leonard G. A., Zhang S., Peterson M. R., Harrop S. J., Helliwell J. R., Cruse W. B., d'Estaintot B. L., Kennard O., Brown T., Hunter W. N. Self-association of a DNA loop creates a quadruplex: crystal structure of d(GCATGCT) at 1.8 A resolution. Structure. 1995 Apr 15;3(4):335–340. doi: 10.1016/s0969-2126(01)00165-4. [DOI] [PubMed] [Google Scholar]
  47. Little J. W., Edmiston S. H., Pacelli L. Z., Mount D. W. Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3225–3229. doi: 10.1073/pnas.77.6.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Malkov V. A., Camerini-Otero R. D. Dissociation kinetics of RecA protein-three-stranded DNA complexes reveals a low fidelity of RecA-assisted recognition of homology. J Mol Biol. 1998 May 1;278(2):317–330. doi: 10.1006/jmbi.1998.1706. [DOI] [PubMed] [Google Scholar]
  49. Mazin A. V., Kowalczykowski S. C. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 1998 Feb 16;17(4):1161–1168. doi: 10.1093/emboj/17.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mazin A. V., Kowalczykowski S. C. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10673–10678. doi: 10.1073/pnas.93.20.10673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. McGavin S. Chromosome pairing. Nature. 1973 Mar 30;242(5396):330–330. doi: 10.1038/242330a0. [DOI] [PubMed] [Google Scholar]
  52. McGavin S. Models of specifically paired like (homologous) nucleic acid structures. J Mol Biol. 1971 Jan 28;55(2):293–298. doi: 10.1016/0022-2836(71)90201-4. [DOI] [PubMed] [Google Scholar]
  53. Müller B., Burdett I., West S. C. Unusual stability of recombination intermediates made by Escherichia coli RecA protein. EMBO J. 1992 Jul;11(7):2685–2693. doi: 10.1002/j.1460-2075.1992.tb05334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Nishinaka T., Ito Y., Yokoyama S., Shibata T. An extended DNA structure through deoxyribose-base stacking induced by RecA protein. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6623–6628. doi: 10.1073/pnas.94.13.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Nishinaka T., Shinohara A., Ito Y., Yokoyama S., Shibata T. Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11071–11076. doi: 10.1073/pnas.95.19.11071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Nordén B., Elvingson C., Kubista M., Sjöberg B., Ryberg H., Ryberg M., Mortensen K., Takahashi M. Structure of RecA-DNA complexes studied by combination of linear dichroism and small-angle neutron scattering measurements on flow-oriented samples. J Mol Biol. 1992 Aug 20;226(4):1175–1191. doi: 10.1016/0022-2836(92)91060-3. [DOI] [PubMed] [Google Scholar]
  57. Nordén B., Wittung-Stafshede P., Ellouze C., Kim H. K., Mortensen K., Takahashi M. Base orientation of second DNA in RecA.DNA filaments. Analysis by combination of linear dichroism and small angle neutron scattering in flow-oriented solution. J Biol Chem. 1998 Jun 19;273(25):15682–15686. doi: 10.1074/jbc.273.25.15682. [DOI] [PubMed] [Google Scholar]
  58. Podyminogin M. A., Meyer R. B., Jr, Gamper H. B. RecA-catalyzed, sequence-specific alkylation of DNA by cross-linking oligonucleotides. Effects of length and nonhomologous base substitutions. Biochemistry. 1996 Jun 4;35(22):7267–7274. doi: 10.1021/bi9529465. [DOI] [PubMed] [Google Scholar]
  59. Pugh B. F., Cox M. M. High salt activation of recA protein ATPase in the absence of DNA. J Biol Chem. 1988 Jan 5;263(1):76–83. [PubMed] [Google Scholar]
  60. Rao B. J., Chiu S. K., Bazemore L. R., Reddy G., Radding C. M. How specific is the first recognition step of homologous recombination? Trends Biochem Sci. 1995 Mar;20(3):109–113. doi: 10.1016/s0968-0004(00)88976-8. [DOI] [PubMed] [Google Scholar]
  61. Rao B. J., Chiu S. K., Radding C. M. Homologous recognition and triplex formation promoted by RecA protein between duplex oligonucleotides and single-stranded DNA. J Mol Biol. 1993 Jan 20;229(2):328–343. doi: 10.1006/jmbi.1993.1038. [DOI] [PubMed] [Google Scholar]
  62. Rao B. J., Dutreix M., Radding C. M. Stable three-stranded DNA made by RecA protein. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2984–2988. doi: 10.1073/pnas.88.8.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Reddy G., Burnett B., Radding C. M. Uptake and processing of duplex DNA by RecA nucleoprotein filaments: insights provided by a mixed population of dynamic and static intermediates. Biochemistry. 1995 Aug 15;34(32):10194–10204. doi: 10.1021/bi00032a013. [DOI] [PubMed] [Google Scholar]
  64. Roberts J. W., Roberts C. W., Craig N. L. Escherichia coli recA gene product inactivates phage lambda repressor. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4714–4718. doi: 10.1073/pnas.75.10.4714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rosselli W., Stasiak A. Energetics of RecA-mediated recombination reactions. Without ATP hydrolysis RecA can mediate polar strand exchange but is unable to recycle. J Mol Biol. 1990 Nov 20;216(2):335–352. doi: 10.1016/S0022-2836(05)80325-0. [DOI] [PubMed] [Google Scholar]
  66. Rosselli W., Stasiak A. The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J. 1991 Dec;10(13):4391–4396. doi: 10.1002/j.1460-2075.1991.tb05017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Stasiak A., Di Capua E., Koller T. Elongation of duplex DNA by recA protein. J Mol Biol. 1981 Sep 25;151(3):557–564. doi: 10.1016/0022-2836(81)90010-3. [DOI] [PubMed] [Google Scholar]
  68. Stasiak A., Di Capua E. The helicity of DNA in complexes with recA protein. Nature. 1982 Sep 9;299(5879):185–186. doi: 10.1038/299185a0. [DOI] [PubMed] [Google Scholar]
  69. Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
  70. Takahashi M., Kubista M., Nordén B. Co-ordination of multiple DNA molecules in RecA fiber evidenced by linear dichroism spectroscopy. Biochimie. 1991 Feb-Mar;73(2-3):219–226. doi: 10.1016/0300-9084(91)90205-f. [DOI] [PubMed] [Google Scholar]
  71. Takahashi M., Nordén B. Structure of RecA-DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. Adv Biophys. 1994;30:1–35. doi: 10.1016/0065-227x(94)90009-4. [DOI] [PubMed] [Google Scholar]
  72. Tuite E., Sehlstedt U., Hagmar P., Nordén B., Takahashi M. Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism. Eur J Biochem. 1997 Jan 15;243(1-2):482–492. doi: 10.1111/j.1432-1033.1997.0482a.x. [DOI] [PubMed] [Google Scholar]
  73. Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wilson J. H. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3641–3645. doi: 10.1073/pnas.76.8.3641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wittung P., Bazemore L. R., Takahashi M., Nordén B., Radding C. Second-site RecA-DNA interactions: lack of identical recognition. Biochemistry. 1996 Dec 3;35(48):15349–15355. doi: 10.1021/bi961755e. [DOI] [PubMed] [Google Scholar]
  76. Wittung P., Nordén B., Takahashi M. Spectroscopic observation of renaturation between polynucleotides with RecA in the presence of ATP hydrolysis. Eur J Biochem. 1994 Aug 15;224(1):39–45. doi: 10.1111/j.1432-1033.1994.tb19992.x. [DOI] [PubMed] [Google Scholar]
  77. Wong B. C., Chiu S. K., Chow S. A. The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein. J Biol Chem. 1998 May 15;273(20):12120–12127. doi: 10.1074/jbc.273.20.12120. [DOI] [PubMed] [Google Scholar]
  78. Yu X., Egelman E. H. Image analysis reveals that Escherichia coli RecA protein consists of two domains. Biophys J. 1990 Mar;57(3):555–566. doi: 10.1016/S0006-3495(90)82571-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Yu X., Egelman E. H. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol. 1992 Sep 5;227(1):334–346. doi: 10.1016/0022-2836(92)90702-l. [DOI] [PubMed] [Google Scholar]
  80. Zhou X., Adzuma K. DNA strand exchange mediated by the Escherichia coli RecA protein initiates in the minor groove of double-stranded DNA. Biochemistry. 1997 Apr 15;36(15):4650–4661. doi: 10.1021/bi9630063. [DOI] [PubMed] [Google Scholar]
  81. Zhurkin V. B., Raghunathan G., Ulyanov N. B., Camerini-Otero R. D., Jernigan R. L. A parallel DNA triplex as a model for the intermediate in homologous recombination. J Mol Biol. 1994 Jun 3;239(2):181–200. doi: 10.1006/jmbi.1994.1362. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES