Abstract
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).
Full Text
The Full Text of this article is available as a PDF (107.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althaus T., Stockburger M. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release. Biochemistry. 1998 Mar 3;37(9):2807–2817. doi: 10.1021/bi9714969. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Govindjee R., Imasheva E. S., Misra S., Ebrey T. G., Feng Y., Crouch R. K., Menick D. R. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry. 1995 Jul 11;34(27):8820–8834. doi: 10.1021/bi00027a034. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Imasheva E. S., Ebrey T. G., Chen N., Menick D. R., Crouch R. K. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry. 1997 Jul 22;36(29):8671–8676. doi: 10.1021/bi970744y. [DOI] [PubMed] [Google Scholar]
- Braiman M. S., Mogi T., Marti T., Stern L. J., Khorana H. G., Rothschild K. J. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry. 1988 Nov 15;27(23):8516–8520. doi: 10.1021/bi00423a002. [DOI] [PubMed] [Google Scholar]
- Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem. 1995 Nov 10;270(45):27122–27126. doi: 10.1074/jbc.270.45.27122. [DOI] [PubMed] [Google Scholar]
- Dioumaev A. K., Richter H. T., Brown L. S., Tanio M., Tuzi S., Saito H., Kimura Y., Needleman R., Lanyi J. K. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry. 1998 Feb 24;37(8):2496–2506. doi: 10.1021/bi971842m. [DOI] [PubMed] [Google Scholar]
- Dér A., Száraz S., Tóth-Boconádi R., Tokaji Z., Keszthelyi L., Stoeckenius W. Alternative translocation of protons and halide ions by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4751–4755. doi: 10.1073/pnas.88.11.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govindjee R., Misra S., Balashov S. P., Ebrey T. G., Crouch R. K., Menick D. R. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Biophys J. 1996 Aug;71(2):1011–1023. doi: 10.1016/S0006-3495(96)79302-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Kalaidzidis I. V., Belevich I. N., Kaulen A. D. Photovoltage evidence that Glu-204 is the intermediate proton donor rather than the terminal proton release group in bacteriorhodopsin. FEBS Lett. 1998 Aug 28;434(1-2):197–200. doi: 10.1016/s0014-5793(98)00980-6. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Mihara K., Kamikubo H., Needleman R., Lanyi J. K., Tokunaga F. Trimeric mutant bacteriorhodopsin, D85N, shows a monophasic CD spectrum. FEBS Lett. 1993 Oct 25;333(1-2):111–113. doi: 10.1016/0014-5793(93)80385-8. [DOI] [PubMed] [Google Scholar]
- Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
- Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
- Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
- ONISHI H., MCCANCE E., GIBBONS N. E. A SYNTHETIC MEDIUM FOR EXTREMELY HALOPHILIC BACTERIA. Can J Microbiol. 1965 Apr;11:365–373. doi: 10.1139/m65-044. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
- Petkova A. T., Hu J. G., Bizounok M., Simpson M., Griffin R. G., Herzfeld J. Arginine activity in the proton-motive photocycle of bacteriorhodopsin: solid-state NMR studies of the wild-type and D85N proteins. Biochemistry. 1999 Feb 2;38(5):1562–1572. doi: 10.1021/bi981968z. [DOI] [PubMed] [Google Scholar]
- Rammelsberg R., Huhn G., Lübben M., Gerwert K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry. 1998 Apr 7;37(14):5001–5009. doi: 10.1021/bi971701k. [DOI] [PubMed] [Google Scholar]
- Richter H. T., Brown L. S., Needleman R., Lanyi J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry. 1996 Apr 2;35(13):4054–4062. doi: 10.1021/bi952883q. [DOI] [PubMed] [Google Scholar]
- Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
- Tanio M., Inoue S., Yokota K., Seki T., Tuzi S., Needleman R., Lanyi J. K., Naito A., Saitô H. Long-distance effects of site-directed mutations on backbone conformation in bacteriorhodopsin from solid state NMR of [1-13C]Val-labeled proteins. Biophys J. 1999 Jul;77(1):431–442. doi: 10.1016/S0006-3495(99)76901-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanio M., Tuzi S., Yamaguchi S., Konishi H., Naito A., Needleman R., Lanyi J. K., Saitô H. Evidence of local conformational fluctuations and changes in bacteriorhodopsin, dependent on lipids, detergents and trimeric structure, as studied by 13C NMR. Biochim Biophys Acta. 1998 Oct 15;1375(1-2):84–92. doi: 10.1016/s0005-2736(98)00151-5. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Naito A., Saitô H. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin. Biochemistry. 1994 Dec 20;33(50):15046–15052. doi: 10.1021/bi00254a013. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Naito A., Saitô H. A high-resolution solid-state 13C-NMR study on [1-13C]Ala and [3-13C]Ala and [1-13C]Leu and Val-labelled bacteriorhodopsin. Conformation and dynamics of transmembrane helices, loops and termini, and hydration-induced conformational change. Eur J Biochem. 1993 Dec 15;218(3):837–844. doi: 10.1111/j.1432-1033.1993.tb18439.x. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Naito A., Saitô H. Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR. Eur J Biochem. 1996 Jul 15;239(2):294–301. doi: 10.1111/j.1432-1033.1996.0294u.x. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Yamaguchi S., Naito A., Needleman R., Lanyi J. K., Saitô H. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Biochemistry. 1996 Jun 11;35(23):7520–7527. doi: 10.1021/bi960274s. [DOI] [PubMed] [Google Scholar]
- Tuzi S., Yamaguchi S., Tanio M., Konishi H., Inoue S., Naito A., Needleman R., Lanyi J. K., Saitô H. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523–1531. doi: 10.1016/S0006-3495(99)77311-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu D., Sheves M., Schulten K. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin. Biophys J. 1995 Dec;69(6):2745–2760. doi: 10.1016/S0006-3495(95)80146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi S., Tuzi S., Seki T., Tanio M., Needleman R., Lanyi J. K., Naito A., Saitô H. Stability of the C-terminal alpha-helical domain of bacteriorhodopsin that protrudes from the membrane surface, as studied by high-resolution solid-state 13C NMR. J Biochem. 1998 Jan;123(1):78–86. doi: 10.1093/oxfordjournals.jbchem.a021919. [DOI] [PubMed] [Google Scholar]
- Zhou F., Windemuth A., Schulten K. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin. Biochemistry. 1993 Mar 9;32(9):2291–2306. doi: 10.1021/bi00060a022. [DOI] [PubMed] [Google Scholar]
- de Groot H. J., Harbison G. S., Herzfeld J., Griffin R. G. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry. 1989 Apr 18;28(8):3346–3353. doi: 10.1021/bi00434a033. [DOI] [PubMed] [Google Scholar]