Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):1824–1838. doi: 10.1016/S0006-3495(99)77027-X

Driven polymer translocation through a narrow pore.

D K Lubensky 1, D R Nelson 1
PMCID: PMC1300467  PMID: 10512806

Abstract

Motivated by experiments in which a polynucleotide is driven through a proteinaceous pore by an electric field, we study the diffusive motion of a polymer threaded through a narrow channel with which it may have strong interactions. We show that there is a range of polymer lengths in which the system is approximately translationally invariant, and we develop a coarse-grained description of this regime. From this description, general features of the distribution of times for the polymer to pass through the pore may be deduced. We also introduce a more microscopic model. This model provides a physically reasonable scenario in which, as in experiments, the polymer's speed depends sensitively on its chemical composition, and even on its orientation in the channel. Finally, we point out that the experimental distribution of times for the polymer to pass through the pore is much broader than expected from simple estimates, and speculate on why this might be.

Full Text

The Full Text of this article is available as a PDF (171.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achter E. K., Felsenfeld G. The conformation of single-strand polynucleotides in solution: sedimentation studies of apurinic acid. Biopolymers. 1971;10(9):1625–1634. doi: 10.1002/bip.360100916. [DOI] [PubMed] [Google Scholar]
  2. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  3. Bezrukov S. M., Kasianowicz J. J. The charge state of an ion channel controls neutral polymer entry into its pore. Eur Biophys J. 1997;26(6):471–476. doi: 10.1007/s002490050101. [DOI] [PubMed] [Google Scholar]
  4. Bezrukov SM, Kasianowicz JJ. Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett. 1993 Apr 12;70(15):2352–2355. doi: 10.1103/PhysRevLett.70.2352. [DOI] [PubMed] [Google Scholar]
  5. Burlatsky S., Deutch J. Influence of solid friction on polymer relaxation in gel electrophoresis. Science. 1993 Jun 18;260(5115):1782–1784. doi: 10.1126/science.260.5115.1782. [DOI] [PubMed] [Google Scholar]
  6. Citovsky V., Zambryski P. Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol. 1993;47:167–197. doi: 10.1146/annurev.mi.47.100193.001123. [DOI] [PubMed] [Google Scholar]
  7. Deutsch JM. Dynamics of pulsed-field electrophoresis. Phys Rev Lett. 1987 Sep 14;59(11):1255–1258. doi: 10.1103/PhysRevLett.59.1255. [DOI] [PubMed] [Google Scholar]
  8. Dreiseikelmann B. Translocation of DNA across bacterial membranes. Microbiol Rev. 1994 Sep;58(3):293–316. doi: 10.1128/mr.58.3.293-316.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanss B., Leal-Pinto E., Bruggeman L. A., Copeland T. D., Klotman P. E. Identification and characterization of a cell membrane nucleic acid channel. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1921–1926. doi: 10.1073/pnas.95.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jülicher F., Bruinsma R. Motion of RNA polymerase along DNA: a stochastic model. Biophys J. 1998 Mar;74(3):1169–1185. doi: 10.1016/S0006-3495(98)77833-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kasianowicz J. J., Bezrukov S. M. Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys J. 1995 Jul;69(1):94–105. doi: 10.1016/S0006-3495(95)79879-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kasianowicz J. J., Brandin E., Branton D., Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770–13773. doi: 10.1073/pnas.93.24.13770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korchev Y. E., Bashford C. L., Alder G. M., Kasianowicz J. J., Pasternak C. A. Low conductance states of a single ion channel are not 'closed'. J Membr Biol. 1995 Oct;147(3):233–239. doi: 10.1007/BF00234521. [DOI] [PubMed] [Google Scholar]
  14. Peng C. K., Buldyrev S. V., Goldberger A. L., Havlin S., Sciortino F., Simons M., Stanley H. E. Long-range correlations in nucleotide sequences. Nature. 1992 Mar 12;356(6365):168–170. doi: 10.1038/356168a0. [DOI] [PubMed] [Google Scholar]
  15. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  17. Simon S. M., Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell. 1992 May 15;69(4):677–684. doi: 10.1016/0092-8674(92)90231-z. [DOI] [PubMed] [Google Scholar]
  18. Simon S. M., Peskin C. S., Oster G. F. What drives the translocation of proteins? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3770–3774. doi: 10.1073/pnas.89.9.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  20. Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996 Dec 13;274(5294):1859–1866. doi: 10.1126/science.274.5294.1859. [DOI] [PubMed] [Google Scholar]
  21. Sung W, Park PJ. Polymer Translocation through a Pore in a Membrane. Phys Rev Lett. 1996 Jul 22;77(4):783–786. doi: 10.1103/PhysRevLett.77.783. [DOI] [PubMed] [Google Scholar]
  22. Szabò I., Bàthori G., Tombola F., Brini M., Coppola A., Zoratti M. DNA translocation across planar bilayers containing Bacillus subtilis ion channels. J Biol Chem. 1997 Oct 3;272(40):25275–25282. doi: 10.1074/jbc.272.40.25275. [DOI] [PubMed] [Google Scholar]
  23. Szabò I., Bàthori G., Tombola F., Coppola A., Schmehl I., Brini M., Ghazi A., De Pinto V., Zoratti M. Double-stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. FASEB J. 1998 Apr;12(6):495–502. doi: 10.1096/fasebj.12.6.495. [DOI] [PubMed] [Google Scholar]
  24. Viovy J. L., Duke T. Solid friction and polymer relaxation in gel electrophoresis. Science. 1994 Apr 1;264(5155):112–113. doi: 10.1126/science.264.5155.112. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES