Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2563–2574. doi: 10.1016/s0006-3495(99)77091-8

gamma-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in gamma-aminobutyric acid type A receptors

DB Williams 1, MH Akabas 1
PMCID: PMC1300531  PMID: 10545357

Abstract

gamma-Aminobutyric acid type A (GABA(A)) receptors are members of the ligand-gated ion channel gene superfamily. Using the substituted cysteine accessibility method, we investigated whether residues in the alpha(1)M3 membrane-spanning segment are water-accessible. Cysteine was substituted, one at a time, for each M3 residue from alpha(1)Ala(291) to alpha(1)Val(307). The ability of these mutants to react with the water-soluble, sulfhydryl-specific reagent pCMBS(-) was assayed electrophysiologically. Cysteines substituted for alpha(1)Ala(291) and alpha(1)Tyr(294) reacted with pCMBS(-) applied both in the presence and in the absence of GABA. Cysteines substituted for alpha(1)Phe(298), alpha(1)Ala(300), alpha(1)Leu(301), and alpha(1)Glu(303) only reacted with pCMBS(-) applied in the presence of GABA. We infer that the pCMBS(-) reactive residues are on the water-accessible surface of the protein and that GABA induces a conformational change that increases the water accessibility of the four M3 residues, possibly by inducing the formation of water-filled crevices that extend into the interior of the protein. Others have shown that mutations of alpha(1)Ala(291), a water-accessible residue, alter volatile anesthetic and ethanol potentiation of GABA-induced currents. Water-filled crevices penetrating into the interior of the membrane-spanning domain may allow anesthetics and alcohol to reach their binding sites and thus may have implications for the mechanisms of action of these agents.

Full Text

The Full Text of this article is available as a PDF (228.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Karlin A. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the alpha-subunit. Biochemistry. 1995 Oct 3;34(39):12496–12500. doi: 10.1021/bi00039a002. [DOI] [PubMed] [Google Scholar]
  2. Akabas M. H., Kaufmann C., Archdeacon P., Karlin A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron. 1994 Oct;13(4):919–927. doi: 10.1016/0896-6273(94)90257-7. [DOI] [PubMed] [Google Scholar]
  3. Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 1992 Oct 9;258(5080):307–310. doi: 10.1126/science.1384130. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Amin J. A single hydrophobic residue confers barbiturate sensitivity to gamma-aminobutyric acid type C receptor. Mol Pharmacol. 1999 Mar;55(3):411–423. [PubMed] [Google Scholar]
  6. Amin J., Weiss D. S. GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature. 1993 Dec 9;366(6455):565–569. doi: 10.1038/366565a0. [DOI] [PubMed] [Google Scholar]
  7. Backus K. H., Arigoni M., Drescher U., Scheurer L., Malherbe P., Möhler H., Benson J. A. Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport. 1993 Dec 13;5(3):285–288. doi: 10.1097/00001756-199312000-00026. [DOI] [PubMed] [Google Scholar]
  8. Baenziger J. E., Méthot N. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of alpha-helical peptide hydrogens in the nicotinic acetylcholine receptor. J Biol Chem. 1995 Dec 8;270(49):29129–29137. doi: 10.1074/jbc.270.49.29129. [DOI] [PubMed] [Google Scholar]
  9. Baker O. S., Larsson H. P., Mannuzzu L. M., Isacoff E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron. 1998 Jun;20(6):1283–1294. doi: 10.1016/s0896-6273(00)80507-3. [DOI] [PubMed] [Google Scholar]
  10. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Belelli D., Lambert J. J., Peters J. A., Wafford K., Whiting P. J. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11031–11036. doi: 10.1073/pnas.94.20.11031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blanton M. P., Cohen J. B. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry. 1994 Mar 15;33(10):2859–2872. doi: 10.1021/bi00176a016. [DOI] [PubMed] [Google Scholar]
  13. Blanton M. P., Dangott L. J., Raja S. K., Lala A. K., Cohen J. B. Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound -3H-diazofluorene. J Biol Chem. 1998 Apr 10;273(15):8659–8668. doi: 10.1074/jbc.273.15.8659. [DOI] [PubMed] [Google Scholar]
  14. Campos-Caro A., Rovira J. C., Vicente-Agulló F., Ballesta J. J., Sala S., Criado M., Sala F. Role of the putative transmembrane segment M3 in gating of neuronal nicotinic receptors. Biochemistry. 1997 Mar 4;36(9):2709–2715. doi: 10.1021/bi9623486. [DOI] [PubMed] [Google Scholar]
  15. Cha A., Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):391–408. doi: 10.1085/jgp.112.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chang Y., Wang R., Barot S., Weiss D. S. Stoichiometry of a recombinant GABAA receptor. J Neurosci. 1996 Sep 1;16(17):5415–5424. doi: 10.1523/JNEUROSCI.16-17-05415.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Changeux J. P., Edelstein S. J. Allosteric receptors after 30 years. Neuron. 1998 Nov;21(5):959–980. doi: 10.1016/s0896-6273(00)80616-9. [DOI] [PubMed] [Google Scholar]
  18. Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998 Nov;125(5):924–947. doi: 10.1038/sj.bjp.0702164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Corbin J., Méthot N., Wang H. H., Baenziger J. E., Blanton M. P. Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem. 1998 Jan 9;273(2):771–777. doi: 10.1074/jbc.273.2.771. [DOI] [PubMed] [Google Scholar]
  20. Danielson M. A., Bass R. B., Falke J. J. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor. J Biol Chem. 1997 Dec 26;272(52):32878–32888. doi: 10.1074/jbc.272.52.32878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Donnelly D., Overington J. P., Ruffle S. V., Nugent J. H., Blundell T. L. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Protein Sci. 1993 Jan;2(1):55–70. doi: 10.1002/pro.5560020106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  23. Farrar S. J., Whiting P. J., Bonnert T. P., McKernan R. M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem. 1999 Apr 9;274(15):10100–10104. doi: 10.1074/jbc.274.15.10100. [DOI] [PubMed] [Google Scholar]
  24. Fu D., Ballesteros J. A., Weinstein H., Chen J., Javitch J. A. Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochemistry. 1996 Sep 3;35(35):11278–11285. doi: 10.1021/bi960928x. [DOI] [PubMed] [Google Scholar]
  25. Gray T. M., Matthews B. W. Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol. 1984 May 5;175(1):75–81. doi: 10.1016/0022-2836(84)90446-7. [DOI] [PubMed] [Google Scholar]
  26. Görne-Tschelnokow U., Strecker A., Kaduk C., Naumann D., Hucho F. The transmembrane domains of the nicotinic acetylcholine receptor contain alpha-helical and beta structures. EMBO J. 1994 Jan 15;13(2):338–341. doi: 10.1002/j.1460-2075.1994.tb06266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hasinoff B. B., Madsen N. B., Avramovic-Zikic O. Kinetics of the reaction of p-chloromercuribenzoate with the sulfhydryl groups of glutathione, 2-mercaptoethanol, and phosphorylase b. Can J Biochem. 1971 Jun;49(6):742–751. doi: 10.1139/o71-105. [DOI] [PubMed] [Google Scholar]
  28. Holmgren M., Liu Y., Xu Y., Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996;35(7):797–804. doi: 10.1016/0028-3908(96)00129-3. [DOI] [PubMed] [Google Scholar]
  29. Horenstein J., Akabas M. H. Location of a high affinity Zn2+ binding site in the channel of alpha1beta1 gamma-aminobutyric acidA receptors. Mol Pharmacol. 1998 May;53(5):870–877. [PubMed] [Google Scholar]
  30. Jackson M. B. Spontaneous openings of the acetylcholine receptor channel. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3901–3904. doi: 10.1073/pnas.81.12.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jackson M. B., Yakel J. L. The 5-HT3 receptor channel. Annu Rev Physiol. 1995;57:447–468. doi: 10.1146/annurev.ph.57.030195.002311. [DOI] [PubMed] [Google Scholar]
  32. Javitch J. A., Fu D., Chen J., Karlin A. Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron. 1995 Apr;14(4):825–831. doi: 10.1016/0896-6273(95)90226-0. [DOI] [PubMed] [Google Scholar]
  33. Javitch J. A., Fu D., Chen J. Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice. Biochemistry. 1995 Dec 19;34(50):16433–16439. doi: 10.1021/bi00050a026. [DOI] [PubMed] [Google Scholar]
  34. Javitch J. A., Li X., Kaback J., Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10355–10359. doi: 10.1073/pnas.91.22.10355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jones M. V., Sahara Y., Dzubay J. A., Westbrook G. L. Defining affinity with the GABAA receptor. J Neurosci. 1998 Nov 1;18(21):8590–8604. doi: 10.1523/JNEUROSCI.18-21-08590.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995 Dec;15(6):1231–1244. doi: 10.1016/0896-6273(95)90004-7. [DOI] [PubMed] [Google Scholar]
  37. Koltchine V. V., Ye Q., Finn S. E., Harrison N. L. Chimeric GABAA/glycine receptors: expression and barbiturate pharmacology. Neuropharmacology. 1996;35(9-10):1445–1456. doi: 10.1016/s0028-3908(96)00088-3. [DOI] [PubMed] [Google Scholar]
  38. Krasowski M. D., Finn S. E., Ye Q., Harrison N. L. Trichloroethanol modulation of recombinant GABAA, glycine and GABA rho 1 receptors. J Pharmacol Exp Ther. 1998 Mar;284(3):934–942. [PubMed] [Google Scholar]
  39. Krasowski M. D., Koltchine V. V., Rick C. E., Ye Q., Finn S. E., Harrison N. L. Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane. Mol Pharmacol. 1998 Mar;53(3):530–538. doi: 10.1124/mol.53.3.530. [DOI] [PubMed] [Google Scholar]
  40. Lester H. A. Activation of ion channels by acetylcholine: two contrasting transduction pathways. Harvey Lect. 1995;91:79–98. [PubMed] [Google Scholar]
  41. Lugovskoy A. A., Maslennikov I. V., Utkin Y. N., Tsetlin V. I., Cohen J. B., Arseniev A. S. Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. Eur J Biochem. 1998 Jul 15;255(2):455–461. doi: 10.1046/j.1432-1327.1998.2550455.x. [DOI] [PubMed] [Google Scholar]
  42. MacDonald R. L., Rogers C. J., Twyman R. E. Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. J Physiol. 1989 Oct;417:483–500. doi: 10.1113/jphysiol.1989.sp017814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Macdonald R. L., Olsen R. W. GABAA receptor channels. Annu Rev Neurosci. 1994;17:569–602. doi: 10.1146/annurev.ne.17.030194.003033. [DOI] [PubMed] [Google Scholar]
  44. Maconochie D. J., Zempel J. M., Steinbach J. H. How quickly can GABAA receptors open? Neuron. 1994 Jan;12(1):61–71. doi: 10.1016/0896-6273(94)90152-x. [DOI] [PubMed] [Google Scholar]
  45. McKernan R. M., Whiting P. J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 1996 Apr;19(4):139–143. doi: 10.1016/s0166-2236(96)80023-3. [DOI] [PubMed] [Google Scholar]
  46. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  47. Méthot N., Baenziger J. E. Secondary structure of the exchange-resistant core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange. Biochemistry. 1998 Oct 20;37(42):14815–14822. doi: 10.1021/bi980848o. [DOI] [PubMed] [Google Scholar]
  48. Méthot N., McCarthy M. P., Baenziger J. E. Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry. 1994 Jun 21;33(24):7709–7717. doi: 10.1021/bi00190a026. [DOI] [PubMed] [Google Scholar]
  49. Nayeem N., Green T. P., Martin I. L., Barnard E. A. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem. 1994 Feb;62(2):815–818. doi: 10.1046/j.1471-4159.1994.62020815.x. [DOI] [PubMed] [Google Scholar]
  50. Olami Y., Rimon A., Gerchman Y., Rothman A., Padan E. Histidine 225, a residue of the NhaA-Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol Chem. 1997 Jan 17;272(3):1761–1768. doi: 10.1074/jbc.272.3.1761. [DOI] [PubMed] [Google Scholar]
  51. Pascual J. M., Karlin A. State-dependent accessibility and electrostatic potential in the channel of the acetylcholine receptor. Inferences from rates of reaction of thiosulfonates with substituted cysteines in the M2 segment of the alpha subunit. J Gen Physiol. 1998 Jun;111(6):717–739. doi: 10.1085/jgp.111.6.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rabow L. E., Russek S. J., Farb D. H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse. 1995 Nov;21(3):189–274. doi: 10.1002/syn.890210302. [DOI] [PubMed] [Google Scholar]
  53. Roberts D. D., Lewis S. D., Ballou D. P., Olson S. T., Shafer J. A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry. 1986 Sep 23;25(19):5595–5601. doi: 10.1021/bi00367a038. [DOI] [PubMed] [Google Scholar]
  54. Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature. 1987 Jul 16;328(6127):221–227. doi: 10.1038/328221a0. [DOI] [PubMed] [Google Scholar]
  55. Sigel E., Baur R., Trube G., Möhler H., Malherbe P. The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron. 1990 Nov;5(5):703–711. doi: 10.1016/0896-6273(90)90224-4. [DOI] [PubMed] [Google Scholar]
  56. Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tretter V., Ehya N., Fuchs K., Sieghart W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci. 1997 Apr 15;17(8):2728–2737. doi: 10.1523/JNEUROSCI.17-08-02728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol. 1993 Feb 20;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
  59. VANSTEVENINCK J., WEED R. I., ROTHSTEIN A. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT. J Gen Physiol. 1965 Mar;48:617–632. doi: 10.1085/jgp.48.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wang H. L., Milone M., Ohno K., Shen X. M., Tsujino A., Batocchi A. P., Tonali P., Brengman J., Engel A. G., Sine S. M. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999 Mar;2(3):226–233. doi: 10.1038/6326. [DOI] [PubMed] [Google Scholar]
  61. Wick M. J., Mihic S. J., Ueno S., Mascia M. P., Trudell J. R., Brozowski S. J., Ye Q., Harrison N. L., Harris R. A. Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci U S A. 1998 May 26;95(11):6504–6509. doi: 10.1073/pnas.95.11.6504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wingrove P. B., Wafford K. A., Bain C., Whiting P. J. The modulatory action of loreclezole at the gamma-aminobutyric acid type A receptor is determined by a single amino acid in the beta 2 and beta 3 subunit. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4569–4573. doi: 10.1073/pnas.91.10.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wisden W., Seeburg P. H. GABAA receptor channels: from subunits to functional entities. Curr Opin Neurobiol. 1992 Jun;2(3):263–269. doi: 10.1016/0959-4388(92)90113-y. [DOI] [PubMed] [Google Scholar]
  64. Xu M., Akabas M. H. Amino acids lining the channel of the gamma-aminobutyric acid type A receptor identified by cysteine substitution. J Biol Chem. 1993 Oct 15;268(29):21505–21508. [PubMed] [Google Scholar]
  65. Xu M., Akabas M. H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit. J Gen Physiol. 1996 Feb;107(2):195–205. doi: 10.1085/jgp.107.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Xu M., Covey D. F., Akabas M. H. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys J. 1995 Nov;69(5):1858–1867. doi: 10.1016/S0006-3495(95)80056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  68. Yu B., Blaber M., Gronenborn A. M., Clore G. M., Caspar D. L. Disordered water within a hydrophobic protein cavity visualized by x-ray crystallography. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):103–108. doi: 10.1073/pnas.96.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zhang H., Karlin A. Contribution of the beta subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor. Biochemistry. 1998 Jun 2;37(22):7952–7964. doi: 10.1021/bi980143m. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES