Abstract
We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.
Full Text
The Full Text of this article is available as a PDF (262.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bale M. D., Ferry J. D. Strain enhancement of elastic modulus in fine fibrin clots. Thromb Res. 1988 Dec 15;52(6):565–572. doi: 10.1016/0049-3848(88)90129-6. [DOI] [PubMed] [Google Scholar]
- Ben-Ari Z., Panagou M., Patch D., Bates S., Osman E., Pasi J., Burroughs A. Hypercoagulability in patients with primary biliary cirrhosis and primary sclerosing cholangitis evaluated by thrombelastography. J Hepatol. 1997 Mar;26(3):554–559. doi: 10.1016/s0168-8278(97)80420-5. [DOI] [PubMed] [Google Scholar]
- Carr M. E., Jr, Gabriel D. A., McDonagh J. Influence of factor XIII and fibronectin on fiber size and density in thrombin-induced fibrin gels. J Lab Clin Med. 1987 Dec;110(6):747–752. [PubMed] [Google Scholar]
- Carr M. E., Shen L. L., Hermans J. A physical standard of fibrinogen: measurement of the elastic modulus of dilute fibrin gels with a new elastometer. Anal Biochem. 1976 May 7;72:202–211. doi: 10.1016/0003-2697(76)90522-4. [DOI] [PubMed] [Google Scholar]
- Carrell N. A., Holahan J. R., White G. C., McDonagh J. High resolution electrophoretic analysis of human fibrinogen and its crosslinked intermediates. Thromb Haemost. 1983 Feb 28;49(1):47–50. [PubMed] [Google Scholar]
- Cavazza B., Cuniberti C., Patrone E., Pioli F., Rocco M., Trefiletti V. Self-assembly of fibrin monomer. A light scattering and electron microscopic investigation. Ital J Biochem. 1981 Jan-Feb;30(1):75–89. [PubMed] [Google Scholar]
- Chen R., Doolittle R. F. - cross-linking sites in human and bovine fibrin. Biochemistry. 1971 Nov 23;10(24):4487–4491. doi: 10.1021/bi00800a021. [DOI] [PubMed] [Google Scholar]
- Chen R., Doolittle R. F. Identification of the polypeptide chains involved in the cross-linking of fibrin. Proc Natl Acad Sci U S A. 1969 Jun;63(2):420–427. doi: 10.1073/pnas.63.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung D. W., Davie E. W. gamma and gamma' chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry. 1984 Aug 28;23(18):4232–4236. doi: 10.1021/bi00313a033. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F., Chen R., Lau F. Hybrid fibrin: proof of the intermolecular nature of - crosslinking units. Biochem Biophys Res Commun. 1971 Jul 2;44(1):94–100. doi: 10.1016/s0006-291x(71)80163-8. [DOI] [PubMed] [Google Scholar]
- FERRY J. D., MILLER M., SHULMAN S. The conversion of fibrinogen to fibrin. VII. Rigidity and stress relaxation of fibrin clots, eff. of calcium. Arch Biochem Biophys. 1951 Dec;34(2):424–436. doi: 10.1016/0003-9861(51)90021-5. [DOI] [PubMed] [Google Scholar]
- Fornace A. J., Jr, Cummings D. E., Comeau C. M., Kant J. A., Crabtree G. R. Structure of the human gamma-fibrinogen gene. Alternate mRNA splicing near the 3' end of the gene produces gamma A and gamma B forms of gamma-fibrinogen. J Biol Chem. 1984 Oct 25;259(20):12826–12830. [PubMed] [Google Scholar]
- Fowler W. E., Erickson H. P., Hantgan R. R., McDonagh J., Hermans J. Cross-linked fibrinogen dimers demonstrate a feature of the molecular packing in fibrin fibers. Science. 1981 Jan 16;211(4479):287–289. doi: 10.1126/science.6108612. [DOI] [PubMed] [Google Scholar]
- Francis C. W., Marder V. J., Martin S. E. Demonstration of a large molecular weight variant of the gamma chain of normal human plasma fibrinogen. J Biol Chem. 1980 Jun 25;255(12):5599–5604. [PubMed] [Google Scholar]
- Francis C. W., Marder V. J. Rapid formation of large molecular weight alpha-polymers in cross-linked fibrin induced by high factor XIII concentrations. Role of platelet factor XIII. J Clin Invest. 1987 Nov;80(5):1459–1465. doi: 10.1172/JCI113226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freund K. F., Doshi K. P., Gaul S. L., Claremon D. A., Remy D. C., Baldwin J. J., Pitzenberger S. M., Stern A. M. Transglutaminase inhibition by 2-[(2-oxopropyl)thio]imidazolium derivatives: mechanism of factor XIIIa inactivation. Biochemistry. 1994 Aug 23;33(33):10109–10119. doi: 10.1021/bi00199a039. [DOI] [PubMed] [Google Scholar]
- Gerth C., Roberts W. W., Ferry J. D. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep. Biophys Chem. 1974 Oct;2(3):208–217. doi: 10.1016/0301-4622(74)80046-3. [DOI] [PubMed] [Google Scholar]
- Gladner J. A., Nossal R. Effects of crosslinking on the rigidity and proteolytic susceptibility of human fibrin clots. Thromb Res. 1983 May 1;30(3):273–288. doi: 10.1016/0049-3848(83)90081-6. [DOI] [PubMed] [Google Scholar]
- Glover C. J., McIntire L. V., Brown C. H., 3rd, Natelson E. A. Rheological properties of fibrin clots. Effects of fibrinogen concentration, Factor XIII deficiency, and Factor XIII inhibition. J Lab Clin Med. 1975 Oct;86(4):644–656. [PubMed] [Google Scholar]
- Grøn B., Filion-Myklebust C., Bennick A., Nieuwenhuizen W., Matsueda G. R., Brosstad F. Early cross-linked fibrin in human plasma contains alpha-polymers with intact fibrinopeptide A. Blood Coagul Fibrinolysis. 1992 Dec;3(6):731–736. doi: 10.1097/00001721-199212000-00005. [DOI] [PubMed] [Google Scholar]
- Grøn B., Filion-Myklebust C., Bjørnsen S., Haidaris P., Brosstad F. Cross-linked alpha s gamma t-chain hybrids in plasma clots studied by 1D- and 2D electrophoresis and western blotting. Thromb Haemost. 1993 Sep 1;70(3):438–442. [PubMed] [Google Scholar]
- Hantgan R. R. Steady-state fluorescence polarization of dansylcadaverine-fibrinogen: evidence for flexibility. Biochemistry. 1982 Apr 13;21(8):1821–1829. doi: 10.1021/bi00537a018. [DOI] [PubMed] [Google Scholar]
- Hunziker E. B., Straub P. W., Haeberli A. Molecular morphology of fibrin monomers and early oligomers during fibrin polymerization. J Ultrastruct Mol Struct Res. 1988 Jan;98(1):60–70. doi: 10.1016/s0889-1605(88)80934-0. [DOI] [PubMed] [Google Scholar]
- Kaibara M. Dynamic viscoelastic study of the formation of fibrin networks in fibrinogen-thrombin systems and plasma. Biorheology. 1973 Mar;10(1):61–73. doi: 10.3233/bir-1973-10109. [DOI] [PubMed] [Google Scholar]
- Kang Y. G., Martin D. J., Marquez J., Lewis J. H., Bontempo F. A., Shaw B. W., Jr, Starzl T. E., Winter P. M. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg. 1985 Sep;64(9):888–896. [PMC free article] [PubMed] [Google Scholar]
- Kaufmann C. R., Dwyer K. M., Crews J. D., Dols S. J., Trask A. L. Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma. 1997 Apr;42(4):716–722. doi: 10.1097/00005373-199704000-00023. [DOI] [PubMed] [Google Scholar]
- LORAND L., JACOBSEN A. Accelerated lysis of blood clots. Nature. 1962 Sep 1;195:911–912. doi: 10.1038/195911b0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawrence S. O., Wright T. W., Francis C. W., Fay P. J., Haidaris P. J. Purification and functional characterization of homodimeric gamma B-gamma B fibrinogen from rat plasma. Blood. 1993 Oct 15;82(8):2406–2413. [PubMed] [Google Scholar]
- Lorand J. B., Pilkington T. R., Lorand L. Inhibitors of fibrin cross-linking: relevance for thrombolysis. Nature. 1966 Jun 18;210(5042):1273–1274. doi: 10.1038/2101273a0. [DOI] [PubMed] [Google Scholar]
- Lorand L., Credo R. B., Janus T. J. Factor XIII (fibrin-stabilizing factor). Methods Enzymol. 1981;80(Pt 100):333–341. doi: 10.1016/s0076-6879(81)80029-8. [DOI] [PubMed] [Google Scholar]
- Lorand L. Fibrinoligase: the fibrin-stabilizing factor system of blood plasma. Ann N Y Acad Sci. 1972 Dec 8;202:6–30. doi: 10.1111/j.1749-6632.1972.tb16319.x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Losowsky M. S., Miloszewski K. J. Human factor XIII: fibrin-stabilizing factor. Prog Hemost Thromb. 1980;5:245–290. [PubMed] [Google Scholar]
- Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
- Lorand L., Velasco P. T., Murthy S. N., Lefebvre P., Green D. Autoimmune antibody in a hemorrhagic patient interacts with thrombin-activated factor XIII in a unique manner. Blood. 1999 Feb 1;93(3):909–917. [PubMed] [Google Scholar]
- Matacić S., Loewy A. G. The identification of isopeptide crosslinks in insoluble fibrin. Biochem Biophys Res Commun. 1968 Feb 26;30(4):356–362. doi: 10.1016/0006-291x(68)90750-x. [DOI] [PubMed] [Google Scholar]
- McKee P. A., Mattock P., Hill R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mihalyi E. Physicochemical studies of bovine fibrinogen. IV. Ultraviolet absorption and its relation to the structure of the molecule. Biochemistry. 1968 Jan;7(1):208–223. doi: 10.1021/bi00841a026. [DOI] [PubMed] [Google Scholar]
- Mills D., Karpatkin S. Heterogeneity of human fibrinogen: possible relation to proteolysis by thrombin and plasmin as studies by SDS-polyacrylamide gel electrophoresis. Biochem Biophys Res Commun. 1970 Jul 13;40(1):206–211. doi: 10.1016/0006-291x(70)91067-3. [DOI] [PubMed] [Google Scholar]
- Mockros L. F., Roberts W. W., Lorand L. Viscoelastic properties of ligation-inhibited fibrin clots. Biophys Chem. 1974 Aug;2(2):164–169. doi: 10.1016/0301-4622(74)80037-2. [DOI] [PubMed] [Google Scholar]
- Montejo J. M., Naqvi K. R., Lillo M. P., González-Rodríguez J., Acuña A. U. Conformation of human fibrinogen in solution from polarized triplet spectroscopy. Biochemistry. 1992 Aug 25;31(33):7580–7586. doi: 10.1021/bi00148a020. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Finlayson J. S., Umfleet R. A., Galanakis D. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem. 1972 Aug 25;247(16):5210–5219. [PubMed] [Google Scholar]
- Mosesson M. W., Finlayson J. S., Umfleet R. A. Human fibrinogen heterogeneities. 3. Identification of chain variants. J Biol Chem. 1972 Aug 25;247(16):5223–5227. [PubMed] [Google Scholar]
- Mosesson M. W., Siebenlist K. R., Amrani D. L., DiOrio J. P. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1113–1117. doi: 10.1073/pnas.86.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosesson M. W., Siebenlist K. R., Hainfeld J. F., Wall J. S. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J Struct Biol. 1995 Jul-Aug;115(1):88–101. doi: 10.1006/jsbi.1995.1033. [DOI] [PubMed] [Google Scholar]
- Murthy S. N., Lorand L. Cross-linked A alpha.gamma chain hybrids serve as unique markers for fibrinogen polymerized by tissue transglutaminase. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9679–9682. doi: 10.1073/pnas.87.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller M. F., Ris H., Ferry J. D. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. Observations of fibers in cross-section and in deformed states. J Mol Biol. 1984 Apr 5;174(2):369–384. doi: 10.1016/0022-2836(84)90343-7. [DOI] [PubMed] [Google Scholar]
- Nelb G. W., Gerth C., Ferry J. D. Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated closts. Biophys Chem. 1976 Sep;5(3):377–387. doi: 10.1016/0301-4622(76)80050-6. [DOI] [PubMed] [Google Scholar]
- Nelb G. W., Kamykowski G. W., Ferry J. D. Rheology of fibrin clots. V. Shear modulus, creep, and creep recovery of fine unligated clots. Biophys Chem. 1981 Feb;13(1):15–23. doi: 10.1016/0301-4622(81)80020-8. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Pisano J. J., Finlayson J. S., Peyton M. P. [Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine]. Science. 1968 May 24;160(3830):892–893. doi: 10.1126/science.160.3830.892. [DOI] [PubMed] [Google Scholar]
- Reed G. L., Lukacova D. Generation and mechanism of action of a potent inhibitor of factor XIII function. Thromb Haemost. 1995 Aug;74(2):680–685. [PubMed] [Google Scholar]
- Roberts W. W., Lorand L., Mockros L. F. Viscoelastic properties of fibrin clots. Biorheology. 1973 Mar;10(1):29–42. doi: 10.3233/bir-1973-10105. [DOI] [PubMed] [Google Scholar]
- SAMAMA M., PROST R. J., MARCHAL G. L'IMPORTANCE DE LA FIBRIN'EMIE DANS L'INTERPR'ETATION DE L'AMPLITUDE MAXIMA DES THROMBODYNAMOGRAMMES. Hemostase. 1963 Apr-Jun;3:165–176. [PubMed] [Google Scholar]
- Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem. 1973 Feb 25;248(4):1395–1407. [PubMed] [Google Scholar]
- Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. The effect of fibrin-stabilizing factor on the subunit structure of human fibrin. J Clin Invest. 1971 Jul;50(7):1506–1513. doi: 10.1172/JCI106636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selmayr E., Deffner M., Bachmann L., Müller-Berghaus G. Chromatography and electron microscopy of cross-linked fibrin polymers--a new model describing the cross-linking at the DD-trans contact of the fibrin molecules. Biopolymers. 1988 Nov;27(11):1733–1748. doi: 10.1002/bip.360271104. [DOI] [PubMed] [Google Scholar]
- Selmayr E., Thiel W., Müller-Berghaus G. Crosslinking of fibrinogen to immobilized DesAA-fibrin. Thromb Res. 1985 Aug 15;39(4):459–465. doi: 10.1016/0049-3848(85)90169-0. [DOI] [PubMed] [Google Scholar]
- Shainoff J. R., Urbanic D. A., DiBello P. M. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase. Identification of a rapid mode of hybrid alpha-/gamma-chain cross-linking that is promoted by the gamma-chain cross-linking. J Biol Chem. 1991 Apr 5;266(10):6429–6437. [PubMed] [Google Scholar]
- Sharma S. K., Vera R. L., Stegall W. C., Whitten C. W. Management of a postpartum coagulopathy using thrombelastography. J Clin Anesth. 1997 May;9(3):243–247. doi: 10.1016/s0952-8180(97)00026-3. [DOI] [PubMed] [Google Scholar]
- Shen L. L., Hermans J., McDonagh J., McDonagh R. P., Carr M. Effects of calcium ion and covalent crosslinking on formation and elasticity of fibrin cells. Thromb Res. 1975 Mar;6(3):255–265. doi: 10.1016/0049-3848(75)90073-0. [DOI] [PubMed] [Google Scholar]
- Shen L. L., McDonagh R. P., McDonagh J., Hermans J., Jr Fibrin gel structure: influence of calcium and covalent cross-linking on the elasticity. Biochem Biophys Res Commun. 1974 Feb 4;56(3):793–798. doi: 10.1016/0006-291x(74)90675-5. [DOI] [PubMed] [Google Scholar]
- Shen L., Lorand L. Contribution of fibrin stabilization to clot strength. Supplementation of factor XIII-deficient plasma with the purified zymogen. J Clin Invest. 1983 May;71(5):1336–1341. doi: 10.1172/JCI110885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siebenlist K. R., Meh D. A., Wall J. S., Hainfeld J. F., Mosesson M. W. Orientation of the carboxy-terminal regions of fibrin gamma chain dimers determined from the crosslinked products formed in mixtures of fibrin, fragment D, and factor XIIIa. Thromb Haemost. 1995 Oct;74(4):1113–1119. [PubMed] [Google Scholar]
- Siebenlist K. R., Mosesson M. W. Factors affecting gamma-chain multimer formation in cross-linked fibrin. Biochemistry. 1992 Jan 28;31(3):936–941. doi: 10.1021/bi00118a040. [DOI] [PubMed] [Google Scholar]
- Sobel J. H., Thibodeau C. A., Canfield R. E. Early alpha chain crosslinking in human fibrin preparations. Thromb Haemost. 1988 Oct 31;60(2):153–159. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuman K. J., McCarthy R. J., Djuric M., Rizzo V., Ivankovich A. D. Evaluation of coagulation during cardiopulmonary bypass with a heparinase-modified thromboelastographic assay. J Cardiothorac Vasc Anesth. 1994 Apr;8(2):144–149. doi: 10.1016/1053-0770(94)90052-3. [DOI] [PubMed] [Google Scholar]
- Veklich Y., Ang E. K., Lorand L., Weisel J. W. The complementary aggregation sites of fibrin investigated through examination of polymers of fibrinogen with fragment E. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1438–1442. doi: 10.1073/pnas.95.4.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisel J. W., Francis C. W., Nagaswami C., Marder V. J. Determination of the topology of factor XIIIa-induced fibrin gamma-chain cross-links by electron microscopy of ligated fragments. J Biol Chem. 1993 Dec 15;268(35):26618–26624. [PubMed] [Google Scholar]
- Weisel J. W., Nagaswami C., Makowski L. Twisting of fibrin fibers limits their radial growth. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8991–8995. doi: 10.1073/pnas.84.24.8991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfenstein-Todel C., Mosesson M. W. Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (gamma'). Proc Natl Acad Sci U S A. 1980 Sep;77(9):5069–5073. doi: 10.1073/pnas.77.9.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuckerman L., Cohen E., Vagher J. P., Woodward E., Caprini J. A. Comparison of thrombelastography with common coagulation tests. Thromb Haemost. 1981 Dec 23;46(4):752–756. [PubMed] [Google Scholar]