Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):2920–2929. doi: 10.1016/S0006-3495(99)77125-0

Protein-assisted pericyclic reactions: an alternate hypothesis for the action of quantal receptors.

W Radding 1, T Romo 1, G N Phillips Jr 1
PMCID: PMC1300565  PMID: 10585916

Abstract

The rules for allowable pericyclic reactions indicate that the photoisomerizations of retinals in rhodopsins can be formally analogous to thermally promoted Diels-Alder condensations of monoenes with retinols. With little change in the seven-transmembrane helical environment these latter reactions could mimic the retinal isomerization while providing highly sensitive chemical reception. In this way archaic progenitors of G-protein-coupled chemical quantal receptors such as those for pheromones might have been evolutionarily plagiarized from the photon quantal receptor, rhodopsin, or vice versa. We investigated whether the known structure of bacteriorhodopsin exhibited any similarity in its active site with those of the two known antibody catalysts of Diels-Alder reactions and that of the photoactive yellow protein. A remarkable three-dimensional motif of aromatic side chains emerged in all four proteins despite the drastic differences in backbone structure. Molecular orbital calculations supported the possibility of transient pericyclic reactions as part of the isomerization-signal transduction mechanisms in both bacteriorhodopsin and the photoactive yellow protein. It appears that reactions in all four of the proteins investigated may be biological analogs of the organic chemists' chiral auxiliary-aided Diels-Alder reactions. Thus the light receptor and the chemical receptor subfamilies of the heptahelical receptor family may have been unified at one time by underlying pericyclic chemistry.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahl P. L., Stern L. J., Düring D., Mogi T., Khorana H. G., Rothschild K. J. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. J Biol Chem. 1988 Sep 25;263(27):13594–13601. [PubMed] [Google Scholar]
  2. Attwood T. K., Findlay J. B. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994 Feb;7(2):195–203. doi: 10.1093/protein/7.2.195. [DOI] [PubMed] [Google Scholar]
  3. Baldwin J. M., Schertler G. F., Unger V. M. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol. 1997 Sep 12;272(1):144–164. doi: 10.1006/jmbi.1997.1240. [DOI] [PubMed] [Google Scholar]
  4. Bathgate R., Rust W., Balvers M., Hartung S., Morley S., Ivell R. Structure and expression of the bovine oxytocin receptor gene. DNA Cell Biol. 1995 Dec;14(12):1037–1048. doi: 10.1089/dna.1995.14.1037. [DOI] [PubMed] [Google Scholar]
  5. Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
  6. Birge R. R., Einterz C. M., Knapp H. M., Murray L. P. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Biophys J. 1988 Mar;53(3):367–385. doi: 10.1016/S0006-3495(88)83114-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Birge R. R. Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem. 1990;41:683–733. doi: 10.1146/annurev.pc.41.100190.003343. [DOI] [PubMed] [Google Scholar]
  8. Cordfunke R., Kort R., Pierik A., Gobets B., Koomen G. J., Verhoeven J. W., Hellingwerf K. J. Trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7396–7401. doi: 10.1073/pnas.95.13.7396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dulac C., Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 1995 Oct 20;83(2):195–206. doi: 10.1016/0092-8674(95)90161-2. [DOI] [PubMed] [Google Scholar]
  10. Duñach M., Marti T., Khorana H. G., Rothschild K. J. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9873–9877. doi: 10.1073/pnas.87.24.9873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster K. W., Saranak J., Derguini F., Zarrilli G. R., Johnson R., Okabe M., Nakanishi K. Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal. Biochemistry. 1989 Jan 24;28(2):819–824. doi: 10.1021/bi00428a061. [DOI] [PubMed] [Google Scholar]
  12. Gai F., Hasson K. C., McDonald J. C., Anfinrud P. A. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science. 1998 Mar 20;279(5358):1886–1891. doi: 10.1126/science.279.5358.1886. [DOI] [PubMed] [Google Scholar]
  13. Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Srajer V., Teng T. Y., Schildkamp W., McRee D. E. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science. 1997 Mar 7;275(5305):1471–1475. doi: 10.1126/science.275.5305.1471. [DOI] [PubMed] [Google Scholar]
  14. Govindjee R., Ebrey T. G., Crofts A. R. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium. Biophys J. 1980 May;30(2):231–242. doi: 10.1016/S0006-3495(80)85091-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green N., Jacobson M., Henneberry T. J., Kishaba A. N. Insect sex attractants. VI. 7-dodecen-1-ol acetates and congeners. J Med Chem. 1967 Jul;10(4):533–535. doi: 10.1021/jm00316a007. [DOI] [PubMed] [Google Scholar]
  16. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  17. Hasson K. C., Gai F., Anfinrud P. A. The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15124–15129. doi: 10.1073/pnas.93.26.15124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hatanaka M., Kashima R., Kandori H., Friedman N., Sheves M., Needleman R., Lanyi J. K., Maeda A. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Biochemistry. 1997 May 6;36(18):5493–5498. doi: 10.1021/bi970081k. [DOI] [PubMed] [Google Scholar]
  19. Heine A., Stura E. A., Yli-Kauhaluoma J. T., Gao C., Deng Q., Beno B. R., Houk K. N., Janda K. D., Wilson I. A. An antibody exo Diels-Alderase inhibitor complex at 1.95 angstrom resolution. Science. 1998 Mar 20;279(5358):1934–1940. doi: 10.1126/science.279.5358.1934. [DOI] [PubMed] [Google Scholar]
  20. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  21. Hermone A., Kuczera K. Free-energy simulations of the retinal cis --> trans isomerization in bacteriorhodopsin. Biochemistry. 1998 Mar 3;37(9):2843–2853. doi: 10.1021/bi9717789. [DOI] [PubMed] [Google Scholar]
  22. Hirata M., Kakizuka A., Aizawa M., Ushikubi F., Narumiya S. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11192–11196. doi: 10.1073/pnas.91.23.11192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jang D. J., el-Sayed M. A., Stern L. J., Mogi T., Khorana H. G. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4103–4107. doi: 10.1073/pnas.87.11.4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kakar S. S., Rahe C. H., Neill J. D. Molecular cloning, sequencing, and characterizing the bovine receptor for gonadotropin releasing hormone (GnRH). Domest Anim Endocrinol. 1993 Oct;10(4):335–342. doi: 10.1016/0739-7240(93)90037-c. [DOI] [PubMed] [Google Scholar]
  25. Kitamura K., Shimoda C. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J. 1991 Dec;10(12):3743–3751. doi: 10.1002/j.1460-2075.1991.tb04943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kluge T., Olejnik J., Smilowitz L., Rothschild K. J. Conformational changes in the core structure of bacteriorhodopsin. Biochemistry. 1998 Jul 14;37(28):10279–10285. doi: 10.1021/bi9802465. [DOI] [PubMed] [Google Scholar]
  27. Kuipers W., Oliveira L., Vriend G., Ijzerman A. P. Identification of class-determining residues in G protein-coupled receptors by sequence analysis. Receptors Channels. 1997;5(3-4):159–174. [PubMed] [Google Scholar]
  28. Lawson M. A., Zacks D. N., Derguini F., Nakanishi K., Spudich J. L. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J. 1991 Dec;60(6):1490–1498. doi: 10.1016/S0006-3495(91)82184-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
  30. Menini A., Picco C., Firestein S. Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature. 1995 Feb 2;373(6513):435–437. doi: 10.1038/373435a0. [DOI] [PubMed] [Google Scholar]
  31. Mogi T., Marti T., Khorana H. G. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin. J Biol Chem. 1989 Aug 25;264(24):14197–14201. [PubMed] [Google Scholar]
  32. Müller S. C., Mair T., Steinbock O. Traveling waves in yeast extract and in cultures of Dictyostelium discoideum. Biophys Chem. 1998 May 5;72(1-2):37–47. doi: 10.1016/s0301-4622(98)00121-5. [DOI] [PubMed] [Google Scholar]
  33. Nef P. Early events in olfaction: diversity and spatial patterns of odorant receptors. Receptors Channels. 1993;1(4):259–266. [PubMed] [Google Scholar]
  34. Nina M., Roux B., Smith J. C. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J. 1995 Jan;68(1):25–39. doi: 10.1016/S0006-3495(95)80184-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pogozheva I. D., Lomize A. L., Mosberg H. I. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints. Biophys J. 1998 Aug;75(2):612–634. doi: 10.1016/S0006-3495(98)77552-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prestwich G. D. Proteins that smell: pheromone recognition and signal transduction. Bioorg Med Chem. 1996 Mar;4(3):505–513. doi: 10.1016/0968-0896(96)00033-8. [DOI] [PubMed] [Google Scholar]
  37. Rasmussen L. E., Lee T. D., Zhang A., Roelofs W. L., Daves G. D., Jr Purification, identification, concentration and bioactivity of (Z)-7-dodecen-1-yl acetate: sex pheromone of the female Asian elephant, Elephas maximus. Chem Senses. 1997 Aug;22(4):417–437. doi: 10.1093/chemse/22.4.417. [DOI] [PubMed] [Google Scholar]
  38. Roelofs W. L. Chemistry of sex attraction. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):44–49. doi: 10.1073/pnas.92.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Romesberg F. E., Spiller B., Schultz P. G., Stevens R. C. Immunological origins of binding and catalysis in a Diels-Alderase antibody. Science. 1998 Mar 20;279(5358):1929–1933. doi: 10.1126/science.279.5358.1929. [DOI] [PubMed] [Google Scholar]
  40. Rothschild K. J., Gray D., Mogi T., Marti T., Braiman M. S., Stern L. J., Khorana H. G. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86. Biochemistry. 1989 Aug 22;28(17):7052–7059. doi: 10.1021/bi00443a041. [DOI] [PubMed] [Google Scholar]
  41. Rousso I., Gat Y., Lewis A., Sheves M., Ottolenghi M. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Biophys J. 1998 Jul;75(1):413–417. doi: 10.1016/S0006-3495(98)77526-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rousso I., Khachatryan E., Gat Y., Brodsky I., Ottolenghi M., Sheves M., Lewis A. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7937–7941. doi: 10.1073/pnas.94.15.7937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Röper D., Krüger P., Grötzinger J., Wollmer A., Strassburger W. Models of G-protein coupled receptors revised for family-wide compliance with experimental data. A new sequence accommodation suggested for helix G. Receptors Channels. 1995;3(2):97–106. [PubMed] [Google Scholar]
  44. Schneider D. Insect olfaction: deciphering system for chemical messages. Science. 1969 Mar 7;163(3871):1031–1037. doi: 10.1126/science.163.3871.1031. [DOI] [PubMed] [Google Scholar]
  45. Sullivan S. L., Ressler K. J., Buck L. B. Spatial patterning and information coding in the olfactory system. Curr Opin Genet Dev. 1995 Aug;5(4):516–523. doi: 10.1016/0959-437x(95)90057-n. [DOI] [PubMed] [Google Scholar]
  46. Thomas B. F., Compton D. R., Martin B. R., Semus S. F. Modeling the cannabinoid receptor: a three-dimensional quantitative structure-activity analysis. Mol Pharmacol. 1991 Nov;40(5):656–665. [PubMed] [Google Scholar]
  47. Troemel E. R., Chou J. H., Dwyer N. D., Colbert H. A., Bargmann C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell. 1995 Oct 20;83(2):207–218. doi: 10.1016/0092-8674(95)90162-0. [DOI] [PubMed] [Google Scholar]
  48. Trumpp-Kallmeyer S., Hoflack J., Bruinvels A., Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem. 1992 Sep 18;35(19):3448–3462. doi: 10.1021/jm00097a002. [DOI] [PubMed] [Google Scholar]
  49. Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997 Jun 5;387(6633):620–624. doi: 10.1038/42506. [DOI] [PubMed] [Google Scholar]
  50. Yuan C., Chen H., Anderson R. E., Kuwata O., Ebrey T. G. The unique lipid composition of gecko (Gekko Gekko) photoreceptor outer segment membranes. Comp Biochem Physiol B Biochem Mol Biol. 1998 Aug;120(4):785–789. doi: 10.1016/s0305-0491(98)10079-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES