Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3227–3233. doi: 10.1016/S0006-3495(99)77153-5

Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules.

M Akeson 1, D Branton 1, J J Kasianowicz 1, E Brandin 1, D W Deamer 1
PMCID: PMC1300593  PMID: 10585944

Abstract

Single molecules of DNA or RNA can be detected as they are driven through an alpha-hemolysin channel by an applied electric field. During translocation, nucleotides within the polynucleotide must pass through the channel pore in sequential, single-file order because the limiting diameter of the pore can accommodate only one strand of DNA or RNA at a time. Here we demonstrate that this nanopore behaves as a detector that can rapidly discriminate between pyrimidine and purine segments along an RNA molecule. Nanopore detection and characterization of single molecules represent a new method for directly reading information encoded in linear polymers, and are critical first steps toward direct sequencing of individual DNA and RNA molecules.

Full Text

The Full Text of this article is available as a PDF (149.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Grossman L., Fasman G. D. Circular dichroism of cytosine dinucleoside monophosphates containing arabinose, ribose, and deoxyribose. Biochemistry. 1968 Nov;7(11):3836–3841. doi: 10.1021/bi00851a008. [DOI] [PubMed] [Google Scholar]
  2. Adler B. A., Grossman L., Fasman G. D. Single-stranded oligomers and polymers of cytidylic and 2'-deoxycytidylic acids: comparative optical rotatory studies. Proc Natl Acad Sci U S A. 1967 Feb;57(2):423–430. doi: 10.1073/pnas.57.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Chandrasekaran R., Leslie A. G. Structure of the single-stranded polyribonucleotide polycytidylic acid. J Mol Biol. 1976 Sep 25;106(3):735–748. doi: 10.1016/0022-2836(76)90262-x. [DOI] [PubMed] [Google Scholar]
  4. Bezrukov S. M., Vodyanoy I., Parsegian V. A. Counting polymers moving through a single ion channel. Nature. 1994 Jul 28;370(6487):279–281. doi: 10.1038/370279a0. [DOI] [PubMed] [Google Scholar]
  5. Brahms J., Michelson A. M., Van Holde K. E. Adenylate oligomers in single- and double-strand conformation. J Mol Biol. 1966 Feb;15(2):467–488. doi: 10.1016/s0022-2836(66)80122-5. [DOI] [PubMed] [Google Scholar]
  6. Brutyan R. A., DeMaria C., Harris A. L. Horizontal 'solvent-free' lipid bimolecular membranes with two-sided access can be formed and facilitate ion channel reconstitution. Biochim Biophys Acta. 1995 Jun 14;1236(2):339–344. doi: 10.1016/0005-2736(95)00089-l. [DOI] [PubMed] [Google Scholar]
  7. Bustamante J. O., Oberleithner H., Hanover J. A., Liepins A. Patch clamp detection of transcription factor translocation along the nuclear pore complex channel. J Membr Biol. 1995 Aug;146(3):253–261. doi: 10.1007/BF00233945. [DOI] [PubMed] [Google Scholar]
  8. Evans F. E., Sarma R. H. Nucleotide rigidity. Nature. 1976 Oct 14;263(5578):567–572. doi: 10.1038/263567a0. [DOI] [PubMed] [Google Scholar]
  9. FASMAN G. D., LINDBLOW C., GROSSMAN L. THE HELICAL CONFORMATIONS OF POLYCYTIDYLIC ACID: STUDIES ON THE FORCES INVOLVED. Biochemistry. 1964 Aug;3:1015–1021. doi: 10.1021/bi00896a002. [DOI] [PubMed] [Google Scholar]
  10. Inners L. D., Felsenfeld G. Conformation of polyribouridylic acid in solution. J Mol Biol. 1970 Jun 14;50(2):373–389. doi: 10.1016/0022-2836(70)90199-3. [DOI] [PubMed] [Google Scholar]
  11. Kasianowicz J. J., Brandin E., Branton D., Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770–13773. doi: 10.1073/pnas.93.24.13770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leng M., Felsenfeld G. A study of polyadenylic acid at neutral pH. J Mol Biol. 1966 Feb;15(2):455–466. doi: 10.1016/s0022-2836(66)80121-3. [DOI] [PubMed] [Google Scholar]
  13. Saenger W., Riecke J., Suck D. A structural model for the polyadenylic acid single helix. J Mol Biol. 1975 Apr 25;93(4):529–534. doi: 10.1016/0022-2836(75)90244-2. [DOI] [PubMed] [Google Scholar]
  14. Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996 Dec 13;274(5294):1859–1866. doi: 10.1126/science.274.5294.1859. [DOI] [PubMed] [Google Scholar]
  15. Wonderlin W. F., Finkel A., French R. J. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys J. 1990 Aug;58(2):289–297. doi: 10.1016/S0006-3495(90)82376-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES