Abstract
Using a site-specific, Electron Paramagnetic Resonance (EPR)-active spin probe that is more rigidly locked to the DNA than any previously reported, the internal dynamics of duplex DNAs in solution were studied. EPR spectra of linear duplex DNAs containing 14-100 base pairs were acquired and simulated by the stochastic Liouville equation for anisotropic rotational diffusion using the diffusion tensor for a right circular cylinder. Internal motions have previously been assumed to be on a rapid enough time scale that they caused an averaging of the spin interactions. This assumption, however, was found to be inconsistent with the experimental data. The weakly bending rod model is modified to take into account the finite relaxation times of the internal modes and applied to analyze the EPR spectra. With this modification, the dependence of the oscillation amplitude of the probe on position along the DNA was in good agreement with the predictions of the weakly bending rod theory. From the length and position dependence of the internal flexibility of the DNA, a submicrosecond dynamic bending persistence length of around 1500 to 1700 A was found. Schellman and Harvey (Biophys. Chem. 55:95-114, 1995) have estimated that, out of the total persistence length of duplex DNA, believed to be about 500 A, approximately 1500 A is accounted for by static bends and 750 A by fluctuating bends. A measured dynamic persistence length of around 1500 A leads to the suggestion that there are additional conformations of the DNA that relax on a longer time scale than that accessible by linear CW-EPR. These measurements are the first direct determination of the dynamic flexibility of duplex DNA in 0.1 M salt.
Full Text
The Full Text of this article is available as a PDF (246.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eimer W., Williamson J. R., Boxer S. G., Pecora R. Characterization of the overall and internal dynamics of short oligonucleotides by depolarized dynamic light scattering and NMR relaxation measurements. Biochemistry. 1990 Jan 23;29(3):799–811. doi: 10.1021/bi00455a030. [DOI] [PubMed] [Google Scholar]
- Hogan M. E., Jardetzky O. Internal motions in DNA. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6341–6345. doi: 10.1073/pnas.76.12.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogan M. E., Jardetzky O. Internal motions in deoxyribonucleic acid II. Biochemistry. 1980 Jul 22;19(15):3460–3468. doi: 10.1021/bi00556a009. [DOI] [PubMed] [Google Scholar]
- Hustedt E. J., Cobb C. E., Beth A. H., Beechem J. M. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data. Biophys J. 1993 Mar;64(3):614–621. doi: 10.1016/S0006-3495(93)81420-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hustedt E. J., Kirchner J. J., Spaltenstein A., Hopkins P. B., Robinson B. H. Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry. 1995 Apr 4;34(13):4369–4375. doi: 10.1021/bi00013a028. [DOI] [PubMed] [Google Scholar]
- Hustedt E. J., Spaltenstein A., Kirchner J. J., Hopkins P. B., Robinson B. H. Motions of short DNA duplexes: an analysis of DNA dynamics using an EPR-active probe. Biochemistry. 1993 Feb 23;32(7):1774–1787. doi: 10.1021/bi00058a011. [DOI] [PubMed] [Google Scholar]
- Keyes R. S., Bobst A. M. Detection of internal and overall dynamics of a two-atom-tethered spin-labeled DNA. Biochemistry. 1995 Jul 18;34(28):9265–9276. doi: 10.1021/bi00028a040. [DOI] [PubMed] [Google Scholar]
- Lipari G., Szabo A. Nuclear magnetic resonance relaxation in nucleic acid fragments: models for internal motion. Biochemistry. 1981 Oct 13;20(21):6250–6256. doi: 10.1021/bi00524a053. [DOI] [PubMed] [Google Scholar]
- Nuutero S., Fujimoto B. S., Flynn P. F., Reid B. R., Ribeiro N. S., Schurr J. M. The amplitude of local angular motion of purines in DNA in solution. Biopolymers. 1994 Apr;34(4):463–480. doi: 10.1002/bip.360340404. [DOI] [PubMed] [Google Scholar]
- Robinson B. H., Drobny G. P. Site-specific dynamics in DNA: theory and experiment. Methods Enzymol. 1995;261:451–509. doi: 10.1016/s0076-6879(95)61021-9. [DOI] [PubMed] [Google Scholar]
- Robinson B. H., Drobny G. P. Site-specific dynamics in DNA: theory. Annu Rev Biophys Biomol Struct. 1995;24:523–549. doi: 10.1146/annurev.bb.24.060195.002515. [DOI] [PubMed] [Google Scholar]
- Robinson B. H., Mailer C., Drobny G. Site-specific dynamics in DNA: experiments. Annu Rev Biophys Biomol Struct. 1997;26:629–658. doi: 10.1146/annurev.biophys.26.1.629. [DOI] [PubMed] [Google Scholar]
- Schellman J. A., Harvey S. C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys Chem. 1995 Jun-Jul;55(1-2):95–114. doi: 10.1016/0301-4622(94)00144-9. [DOI] [PubMed] [Google Scholar]
- Schurr J. M., Babcock H. P., Fujimoto B. S. A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Reson B. 1994 Nov;105(3):211–224. doi: 10.1006/jmrb.1994.1127. [DOI] [PubMed] [Google Scholar]
- Shibata J. H., Fujimoto B. S., Schurr J. M. Rotational dynamics of DNA from 10(-10) to 10(-5) seconds: comparison of theory with optical experiments. Biopolymers. 1985 Oct;24(10):1909–1930. doi: 10.1002/bip.360241006. [DOI] [PubMed] [Google Scholar]
- Strobel O. K., Keyes R. S., Sinden R. R., Bobst A. M. Rigidity of a B-Z region incorporated into a plasmid as monitored by electron paramagnetic resonance. Arch Biochem Biophys. 1995 Dec 20;324(2):357–366. doi: 10.1006/abbi.1995.0048. [DOI] [PubMed] [Google Scholar]
- Thomas D. D., Seidel J. C., Gergely J., Hyde J. S. The quantitative measurement of rotational motion of the subfragment-1 region of myosin by saturation transfer epr spectroscopy. J Supramol Struct. 1975;3(4):376–390. doi: 10.1002/jss.400030410. [DOI] [PubMed] [Google Scholar]
- Wilcoxon J., Schurr J. M. Temperature dependence of the dynamic light scattering of linear phi 29 DNA: implications for spontaneous opening of the double-helix. Biopolymers. 1983 Oct;22(10):2273–2321. doi: 10.1002/bip.360221011. [DOI] [PubMed] [Google Scholar]
- Wu P., Fujimoto B. S., Schurr J. M. Time-resolved fluorescence polarization anisotropy of short restriction fragments: the friction factor for rotation of DNA about its symmetry axis. Biopolymers. 1987 Sep;26(9):1463–1488. doi: 10.1002/bip.360260903. [DOI] [PubMed] [Google Scholar]