Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9

A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution.

M J Smith 1, E L Berg 1, M B Lawrence 1
PMCID: PMC1300609  PMID: 10585960

Abstract

Leukocyte capture and rolling on the vascular endothelium is mediated principally by the selectin family of cell adhesion receptors. In a parallel plate flow chamber, neutrophil rolling on purified selectins or a selectin-ligand substrate was resolved by high speed videomicroscopy as a series of ratchet-like steps with a characteristic time constant (Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M. C. Alessi, S. Kaplanski, and P. Bongrand. 1993. Biophys. J. 64:1922-1933; Alon, R., D. A. Hammer, and T. A. Springer. 1995. Nature (Lond.). 374:539-542). Under shear, neutrophil arrests due to bond formation events were as brief as 4 ms. Pause time distributions for neutrophils tethering on P-, E-, L-selectin, or peripheral node addressin (PNAd) were compared at estimated single bond forces ranging from 37 to 250 pN. Distributions of selectin mediated pause times were fit to a first order exponential, resulting in a molecular dissociation constant (k(off)) for the respective selectin as a function of force. At estimated single bond forces of 125 pN and below, all three selectin dissociation constants fit the Bell and Hookean spring models of force-driven bond breakage equivalently. Unstressed k(off) values based on the Bell model were 2.4, 2.6, 2.8, 3.8 s(-1) for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Bond separation distances (reactive compliance) were 0.39, 0.18, 1.11, 0.59 A for P-selectin, E-selectin, L-selectin, and PNAd, respectively. Dissociation constants for L-selectin and P-selectin at single bond forces above 125 pN were considerably lower than either Bell or Hookean spring model predictions, suggesting the existence of two regimes of reactive compliance. Additionally, interactions between L-selectin and its leukocyte ligand(s) were more labile in the presence of flow than the L-selectin endothelial ligand, PNAd, suggesting that L-selectin ligands may have different molecular and mechanical properties. Both types of L-selectin bonds had a higher reactive compliance than P-selectin or E-selectin bonds.

Full Text

The Full Text of this article is available as a PDF (156.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Fuhlbrigge R., Puri K. D., Springer T. A. The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11631–11636. doi: 10.1073/pnas.95.20.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alon R., Fuhlbrigge R. C., Finger E. B., Springer T. A. Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J Cell Biol. 1996 Nov;135(3):849–865. doi: 10.1083/jcb.135.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  5. Bargatze R. F., Kurk S., Butcher E. C., Jutila M. A. Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med. 1994 Nov 1;180(5):1785–1792. doi: 10.1084/jem.180.5.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  7. Berg E. L., McEvoy L. M., Berlin C., Bargatze R. F., Butcher E. C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature. 1993 Dec 16;366(6456):695–698. doi: 10.1038/366695a0. [DOI] [PubMed] [Google Scholar]
  8. Berg E. L., Mullowney A. T., Andrew D. P., Goldberg J. E., Butcher E. C. Complexity and differential expression of carbohydrate epitopes associated with L-selectin recognition of high endothelial venules. Am J Pathol. 1998 Feb;152(2):469–477. [PMC free article] [PubMed] [Google Scholar]
  9. Berg E. L., Robinson M. K., Warnock R. A., Butcher E. C. The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol. 1991 Jul;114(2):343–349. doi: 10.1083/jcb.114.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen A., Engel P., Tedder T. F. Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes. J Exp Med. 1995 Aug 1;182(2):519–530. doi: 10.1084/jem.182.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  13. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finger E. B., Puri K. D., Alon R., Lawrence M. B., von Andrian U. H., Springer T. A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996 Jan 18;379(6562):266–269. doi: 10.1038/379266a0. [DOI] [PubMed] [Google Scholar]
  16. Fritz J., Katopodis A. G., Kolbinger F., Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283–12288. doi: 10.1073/pnas.95.21.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fuhlbrigge R. C., Alon R., Puri K. D., Lowe J. B., Springer T. A. Sialylated, fucosylated ligands for L-selectin expressed on leukocytes mediate tethering and rolling adhesions in physiologic flow conditions. J Cell Biol. 1996 Nov;135(3):837–848. doi: 10.1083/jcb.135.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geng J. G., Bevilacqua M. P., Moore K. L., McIntyre T. M., Prescott S. M., Kim J. M., Bliss G. A., Zimmerman G. A., McEver R. P. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990 Feb 22;343(6260):757–760. doi: 10.1038/343757a0. [DOI] [PubMed] [Google Scholar]
  19. Goetz D. J., el-Sabban M. E., Pauli B. U., Hammer D. A. Dynamics of neutrophil rolling over stimulated endothelium in vitro. Biophys J. 1994 Jun;66(6):2202–2209. doi: 10.1016/S0006-3495(94)81016-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Graves B. J., Crowther R. L., Chandran C., Rumberger J. M., Li S., Huang K. S., Presky D. H., Familletti P. C., Wolitzky B. A., Burns D. K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994 Feb 10;367(6463):532–538. doi: 10.1038/367532a0. [DOI] [PubMed] [Google Scholar]
  21. Guyer D. A., Moore K. L., Lynam E. B., Schammel C. M., Rogelj S., McEver R. P., Sklar L. A. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin in neutrophil aggregation. Blood. 1996 Oct 1;88(7):2415–2421. [PubMed] [Google Scholar]
  22. Hafezi-Moghadam A., Ley K. Relevance of L-selectin shedding for leukocyte rolling in vivo. J Exp Med. 1999 Mar 15;189(6):939–948. doi: 10.1084/jem.189.6.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997 Apr;72(4):1568–1581. doi: 10.1016/S0006-3495(97)78804-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kansas G. S. Selectins and their ligands: current concepts and controversies. Blood. 1996 Nov 1;88(9):3259–3287. [PubMed] [Google Scholar]
  26. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kishimoto T. K., Warnock R. A., Jutila M. A., Butcher E. C., Lane C., Anderson D. C., Smith C. W. Antibodies against human neutrophil LECAM-1 (LAM-1/Leu-8/DREG-56 antigen) and endothelial cell ELAM-1 inhibit a common CD18-independent adhesion pathway in vitro. Blood. 1991 Aug 1;78(3):805–811. [PubMed] [Google Scholar]
  28. Knibbs R. N., Craig R. A., Natsuka S., Chang A., Cameron M., Lowe J. B., Stoolman L. M. The fucosyltransferase FucT-VII regulates E-selectin ligand synthesis in human T cells. J Cell Biol. 1996 May;133(4):911–920. doi: 10.1083/jcb.133.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kunkel E. J., Chomas J. E., Ley K. Role of primary and secondary capture for leukocyte accumulation in vivo. Circ Res. 1998 Jan 9;82(1):30–38. doi: 10.1161/01.res.82.1.30. [DOI] [PubMed] [Google Scholar]
  30. Kuo S. C., Hammer D. A., Lauffenburger D. A. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys J. 1997 Jul;73(1):517–531. doi: 10.1016/S0006-3495(97)78090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lawrence M. B., Berg E. L., Butcher E. C., Springer T. A. Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. Eur J Immunol. 1995 Apr;25(4):1025–1031. doi: 10.1002/eji.1830250425. [DOI] [PubMed] [Google Scholar]
  32. Lawrence M. B., Kansas G. S., Kunkel E. J., Ley K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E) J Cell Biol. 1997 Feb 10;136(3):717–727. doi: 10.1083/jcb.136.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  34. Leckband D. E., Schmitt F. J., Israelachvili J. N., Knoll W. Direct force measurements of specific and nonspecific protein interactions. Biochemistry. 1994 Apr 19;33(15):4611–4624. doi: 10.1021/bi00181a023. [DOI] [PubMed] [Google Scholar]
  35. Lenter M., Levinovitz A., Isenmann S., Vestweber D. Monospecific and common glycoprotein ligands for E- and P-selectin on myeloid cells. J Cell Biol. 1994 Apr;125(2):471–481. doi: 10.1083/jcb.125.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ley K., Tedder T. F. Leukocyte interactions with vascular endothelium. New insights into selectin-mediated attachment and rolling. J Immunol. 1995 Jul 15;155(2):525–528. [PubMed] [Google Scholar]
  37. Lobb R. R., Chi-Rosso G., Leone D. R., Rosa M. D., Bixler S., Newman B. M., Luhowskyj S., Benjamin C. D., Dougas I. G., Goelz S. E. Expression and functional characterization of a soluble form of endothelial-leukocyte adhesion molecule 1. J Immunol. 1991 Jul 1;147(1):124–129. [PubMed] [Google Scholar]
  38. McEver R. P., Beckstead J. H., Moore K. L., Marshall-Carlson L., Bainton D. F. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989 Jul;84(1):92–99. doi: 10.1172/JCI114175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  40. Moore K. L., Patel K. D., Bruehl R. E., Li F., Johnson D. A., Lichenstein H. S., Cummings R. D., Bainton D. F., McEver R. P. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995 Feb;128(4):661–671. doi: 10.1083/jcb.128.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Piper J. W., Swerlick R. A., Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J. 1998 Jan;74(1):492–513. doi: 10.1016/S0006-3495(98)77807-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Puri K. D., Chen S., Springer T. A. Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature. 1998 Apr 30;392(6679):930–933. doi: 10.1038/31954. [DOI] [PubMed] [Google Scholar]
  43. Puri K. D., Finger E. B., Gaudernack G., Springer T. A. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J Cell Biol. 1995 Oct;131(1):261–270. doi: 10.1083/jcb.131.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Puri K. D., Finger E. B., Springer T. A. The faster kinetics of L-selectin than of E-selectin and P-selectin rolling at comparable binding strength. J Immunol. 1997 Jan 1;158(1):405–413. [PubMed] [Google Scholar]
  45. Ramos C. L., Smith M. J., Snapp K. R., Kansas G. S., Stickney G. W., Ley K., Lawrence M. B. Functional characterization of L-selectin ligands on human neutrophils and leukemia cell lines: evidence for mucinlike ligand activity distinct from P-selectin glycoprotein ligand-1. Blood. 1998 Feb 1;91(3):1067–1075. [PubMed] [Google Scholar]
  46. Rosen S. D., Bertozzi C. R. The selectins and their ligands. Curr Opin Cell Biol. 1994 Oct;6(5):663–673. doi: 10.1016/0955-0674(94)90092-2. [DOI] [PubMed] [Google Scholar]
  47. Sassetti C., Tangemann K., Singer M. S., Kershaw D. B., Rosen S. D. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34. J Exp Med. 1998 Jun 15;187(12):1965–1975. doi: 10.1084/jem.187.12.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schmidt C. E., Horwitz A. F., Lauffenburger D. A., Sheetz M. P. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993 Nov;123(4):977–991. doi: 10.1083/jcb.123.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shao J. Y., Ting-Beall H. P., Hochmuth R. M. Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797–6802. doi: 10.1073/pnas.95.12.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Spertini O., Cordey A. S., Monai N., Giuffrè L., Schapira M. P-selectin glycoprotein ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells. J Cell Biol. 1996 Oct;135(2):523–531. doi: 10.1083/jcb.135.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Swift D. G., Posner R. G., Hammer D. A. Kinetics of adhesion of IgE-sensitized rat basophilic leukemia cells to surface-immobilized antigen in Couette flow. Biophys J. 1998 Nov;75(5):2597–2611. doi: 10.1016/S0006-3495(98)77705-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tandon P., Diamond S. L. Kinetics of beta2-integrin and L-selectin bonding during neutrophil aggregation in shear flow. Biophys J. 1998 Dec;75(6):3163–3178. doi: 10.1016/S0006-3495(98)77758-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Taylor A. D., Neelamegham S., Hellums J. D., Smith C. W., Simon S. I. Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys J. 1996 Dec;71(6):3488–3500. doi: 10.1016/S0006-3495(96)79544-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys J. 1996 Aug;71(2):1102–1114. doi: 10.1016/S0006-3495(96)79312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tempelman L. A., Hammer D. A. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow. Biophys J. 1994 Apr;66(4):1231–1243. doi: 10.1016/S0006-3495(94)80907-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tözeren A., Ley K. How do selectins mediate leukocyte rolling in venules? Biophys J. 1992 Sep;63(3):700–709. doi: 10.1016/S0006-3495(92)81660-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wagers A. J., Lowe J. B., Kansas G. S. An important role for the alpha 1,3 fucosyltransferase, FucT-VII, in leukocyte adhesion to E-selectin. Blood. 1996 Sep 15;88(6):2125–2132. [PubMed] [Google Scholar]
  58. Walcheck B., Kahn J., Fisher J. M., Wang B. B., Fisk R. S., Payan D. G., Feehan C., Betageri R., Darlak K., Spatola A. F. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature. 1996 Apr 25;380(6576):720–723. doi: 10.1038/380720a0. [DOI] [PubMed] [Google Scholar]
  59. Walcheck B., Moore K. L., McEver R. P., Kishimoto T. K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest. 1996 Sep 1;98(5):1081–1087. doi: 10.1172/JCI118888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wang J., Springer T. A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol Rev. 1998 Jun;163:197–215. doi: 10.1111/j.1600-065x.1998.tb01198.x. [DOI] [PubMed] [Google Scholar]
  61. Zakrzewicz A., Gräfe M., Terbeek D., Bongrazio M., Auch-Schwelk W., Walzog B., Graf K., Fleck E., Ley K., Gaehtgens P. L-selectin-dependent leukocyte adhesion to microvascular but not to macrovascular endothelial cells of the human coronary system. Blood. 1997 May 1;89(9):3228–3235. [PubMed] [Google Scholar]
  62. van der Merwe P. A., Barclay A. N. Analysis of cell-adhesion molecule interactions using surface plasmon resonance. Curr Opin Immunol. 1996 Apr;8(2):257–261. doi: 10.1016/s0952-7915(96)80065-3. [DOI] [PubMed] [Google Scholar]
  63. von Andrian U. H., Chambers J. D., McEvoy L. M., Bargatze R. F., Arfors K. E., Butcher E. C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES