Abstract
The x-ray structure analysis of photosystem I (PS I) crystals at 4-A resolution (Schubert et al., 1997, J. Mol. Biol. 272:741-769) has revealed the distances between the three iron-sulfur clusters, labeled F(X), F(1), and F(2), which function on the acceptor side of PS I. There is a general consensus concerning the assignment of the F(X) cluster, which is bound to the PsaA and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors labeled F(1) and F(2) on the electron density map and the F(A) and F(B) clusters defined by electron paramagnetic resonance (EPR) spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429-3439;, Vassiliev et al., 1998, Biophys. J. 74:2029-2035) provided evidence that F(A) is the cluster proximal to F(X), and F(B) is the cluster that donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates of electron transfer between the iron-sulfur clusters F(X), F(A), and F(B). The experimentally determined kinetics of P700(+) dark relaxation in PS I complexes (both F(A) and F(B) are present), HgCl(2)-treated PS I complexes (devoid of F(B)), and P700-F(X) cores (devoid of both F(A) and F(B)) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the asymmetrical position of iron-sulfur clusters F(1) and F(2) relative to F(X), supports the F(X) --> F(A) --> F(B) --> Fd sequence of electron transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P700(+) reduction and F(X)(-) oxidation, we estimate the equilibrium constant of electron transfer between F(X) and F(A) at room temperature to be approximately 47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of F(X) and F(A), as determined by low-temperature EPR spectroscopy.
Full Text
The Full Text of this article is available as a PDF (147.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T., Siefker L. C., Jensen L. H. Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 A resolution. J Biol Chem. 1976 Jun 25;251(12):3801–3806. doi: 10.2210/pdb1fdx/pdb. [DOI] [PubMed] [Google Scholar]
- Díaz-Quintana A., Leibl W., Bottin H., Sétif P. Electron transfer in photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry. 1998 Mar 10;37(10):3429–3439. doi: 10.1021/bi972469l. [DOI] [PubMed] [Google Scholar]
- Evans M. C., Heathcote P. Effects of glycerol on the redox properties of the electron acceptor complex in spinach photosystem I particles. Biochim Biophys Acta. 1980 Mar 7;590(1):89–96. doi: 10.1016/0005-2728(80)90148-6. [DOI] [PubMed] [Google Scholar]
- Fischer N., Sétif P., Rochaix J. D. Site-directed mutagenesis of the PsaC subunit of photosystem I. F(b) is the cluster interacting with soluble ferredoxin. J Biol Chem. 1999 Aug 13;274(33):23333–23340. doi: 10.1074/jbc.274.33.23333. [DOI] [PubMed] [Google Scholar]
- Fischer N., Sétif P., Rochaix J. D. Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochemistry. 1997 Jan 7;36(1):93–102. doi: 10.1021/bi962244v. [DOI] [PubMed] [Google Scholar]
- Gray H. B., Winkler J. R. Electron transfer in proteins. Annu Rev Biochem. 1996;65:537–561. doi: 10.1146/annurev.bi.65.070196.002541. [DOI] [PubMed] [Google Scholar]
- Kamlowski A., van der Est A., Fromme P., Krauss N., Schubert W. D., Klukas O., Stehlik D. The structural organization of the PsaC protein in Photosystem I from single crystal EPR and X-ray crystallographic studies. Biochim Biophys Acta. 1997 Apr 11;1319(2-3):199–213. doi: 10.1016/s0005-2728(96)00162-4. [DOI] [PubMed] [Google Scholar]
- Klukas O., Schubert W. D., Jordan P., Krauss N., Fromme P., Witt H. T., Saenger W. Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem. 1999 Mar 12;274(11):7351–7360. doi: 10.1074/jbc.274.11.7351. [DOI] [PubMed] [Google Scholar]
- Lakshmi K. V., Jung Y. S., Golbeck J. H., Brudvig G. W. Location of the iron-sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. Biochemistry. 1999 Oct 5;38(40):13210–13215. doi: 10.1021/bi9910777. [DOI] [PubMed] [Google Scholar]
- Mamedov M. D., Gourovskaya K. N., Vassiliev I. R., Golbeck J. H., Sememov AYu Electrogenicity accompanies photoreduction of the iron-sulfur clusters F(A) and F(B) in photosystem I. FEBS Lett. 1998 Jul 17;431(2):219–223. doi: 10.1016/s0014-5793(98)00759-5. [DOI] [PubMed] [Google Scholar]
- McMahon B. H., Müller J. D., Wraight C. A., Nienhaus G. U. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J. 1998 May;74(5):2567–2587. doi: 10.1016/S0006-3495(98)77964-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moser C. C., Page C. C., Farid R., Dutton P. L. Biological electron transfer. J Bioenerg Biomembr. 1995 Jun;27(3):263–274. doi: 10.1007/BF02110096. [DOI] [PubMed] [Google Scholar]
- Naver H., Scott M. P., Golbeck J. H., Møller B. L., Scheller H. V. Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. J Biol Chem. 1996 Apr 12;271(15):8996–9001. doi: 10.1074/jbc.271.15.8996. [DOI] [PubMed] [Google Scholar]
- Parrett K. G., Mehari T., Warren P. G., Golbeck J. H. Purification and properties of the intact P-700 and Fx-containing Photosystem I core protein. Biochim Biophys Acta. 1989 Feb 28;973(2):324–332. doi: 10.1016/s0005-2728(89)80439-6. [DOI] [PubMed] [Google Scholar]
- Schlodder E., Falkenberg K., Gergeleit M., Brettel K. Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I. Biochemistry. 1998 Jun 30;37(26):9466–9476. doi: 10.1021/bi973182r. [DOI] [PubMed] [Google Scholar]
- Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
- Vassiliev I. R., Jung Y. S., Mamedov M. D., Semenov AYu, Golbeck J. H. Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J. 1997 Jan;72(1):301–315. doi: 10.1016/S0006-3495(97)78669-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassiliev I. R., Jung Y. S., Yang F., Golbeck J. H. PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin. Biophys J. 1998 Apr;74(4):2029–2035. doi: 10.1016/S0006-3495(98)77909-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu J., Smart L. B., Jung Y. S., Golbeck J., McIntosh L. Absence of PsaC subunit allows assembly of photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC6803. Plant Mol Biol. 1995 Oct;29(2):331–342. doi: 10.1007/BF00043656. [DOI] [PubMed] [Google Scholar]