Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):541–556. doi: 10.1016/S0006-3495(00)76615-X

The mechanochemistry of molecular motors.

D Keller 1, C Bustamante 1
PMCID: PMC1300660  PMID: 10653770

Abstract

A theory of molecular motors is presented that explains how the energy released in single chemical reactions can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and give general expressions for motor velocity versus load force for any member of each class. We show that in some cases simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to determine the step at which movement occurs.

Full Text

The Full Text of this article is available as a PDF (302.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astumian R. D., Bier M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys J. 1996 Feb;70(2):637–653. doi: 10.1016/S0006-3495(96)79605-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Astumian R. D. Thermodynamics and kinetics of a Brownian motor. Science. 1997 May 9;276(5314):917–922. doi: 10.1126/science.276.5314.917. [DOI] [PubMed] [Google Scholar]
  3. Astumian RD, Bier M. Fluctuation driven ratchets: Molecular motors. Phys Rev Lett. 1994 Mar 14;72(11):1766–1769. doi: 10.1103/PhysRevLett.72.1766. [DOI] [PubMed] [Google Scholar]
  4. Coppin C. M., Finer J. T., Spudich J. A., Vale R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1913–1917. doi: 10.1073/pnas.93.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coppin C. M., Pierce D. W., Hsu L., Vale R. D. The load dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539–8544. doi: 10.1073/pnas.94.16.8539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Derényi I., Vicsek T. The kinesin walk: a dynamic model with elastically coupled heads. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6775–6779. doi: 10.1073/pnas.93.13.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elston T., Wang H., Oster G. Energy transduction in ATP synthase. Nature. 1998 Jan 29;391(6666):510–513. doi: 10.1038/35185. [DOI] [PubMed] [Google Scholar]
  8. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  9. Guajardo R., Sousa R. A model for the mechanism of polymerase translocation. J Mol Biol. 1997 Jan 10;265(1):8–19. doi: 10.1006/jmbi.1996.0707. [DOI] [PubMed] [Google Scholar]
  10. Higuchi H., Muto E., Inoue Y., Yanagida T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4395–4400. doi: 10.1073/pnas.94.9.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
  12. Jülicher F., Bruinsma R. Motion of RNA polymerase along DNA: a stochastic model. Biophys J. 1998 Mar;74(3):1169–1185. doi: 10.1016/S0006-3495(98)77833-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kerr R. A. Ocean - in - a - machine starts looking like the real thing. Science. 1993 Apr 2;260(5104):32–33. doi: 10.1126/science.260.5104.32. [DOI] [PubMed] [Google Scholar]
  14. Ma Y. Z., Taylor E. W. Interacting head mechanism of microtubule-kinesin ATPase. J Biol Chem. 1997 Jan 10;272(2):724–730. doi: 10.1074/jbc.272.2.724. [DOI] [PubMed] [Google Scholar]
  15. Magnasco MO. Forced thermal ratchets. Phys Rev Lett. 1993 Sep 6;71(10):1477–1481. doi: 10.1103/PhysRevLett.71.1477. [DOI] [PubMed] [Google Scholar]
  16. Magnasco MO. Molecular combustion motors. Phys Rev Lett. 1994 Apr 18;72(16):2656–2659. doi: 10.1103/PhysRevLett.72.2656. [DOI] [PubMed] [Google Scholar]
  17. Mehta A. D., Finer J. T., Spudich J. A. Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7927–7931. doi: 10.1073/pnas.94.15.7927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Millonas MM. Self-consistent microscopic theory of fluctuation-induced transport. Phys Rev Lett. 1995 Jan 2;74(1):10–13. doi: 10.1103/PhysRevLett.74.10. [DOI] [PubMed] [Google Scholar]
  19. Spudich J. A. How molecular motors work. Nature. 1994 Dec 8;372(6506):515–518. doi: 10.1038/372515a0. [DOI] [PubMed] [Google Scholar]
  20. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  21. Vugmeyster Y., Berliner E., Gelles J. Release of isolated single kinesin molecules from microtubules. Biochemistry. 1998 Jan 13;37(2):747–757. doi: 10.1021/bi971534o. [DOI] [PubMed] [Google Scholar]
  22. Wang H. Y., Elston T., Mogilner A., Oster G. Force generation in RNA polymerase. Biophys J. 1998 Mar;74(3):1186–1202. doi: 10.1016/S0006-3495(98)77834-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang M. D., Schnitzer M. J., Yin H., Landick R., Gelles J., Block S. M. Force and velocity measured for single molecules of RNA polymerase. Science. 1998 Oct 30;282(5390):902–907. doi: 10.1126/science.282.5390.902. [DOI] [PubMed] [Google Scholar]
  24. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653–1657. doi: 10.1126/science.270.5242.1653. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES