Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):857–865. doi: 10.1016/S0006-3495(00)76643-4

Unbinding-binding transition induced by molecular snaps in model membranes.

N Taulier 1, C Nicot 1, M Waks 1, R S Hodges 1, R Ober 1, W Urbach 1
PMCID: PMC1300688  PMID: 10653798

Abstract

We have used a lamellar phase made of a nonionic surfactant, dodecane and water, as a model membrane to investigate its interactions with macromolecular inclusions bringing together two membranes, i.e., acting as macromolecular snaps. In systems devoid of inclusions, the interlamellar distance depends on the total volume fraction of membranes Phi. We show that, in presence of a transmembrane protein, or of several de novo designed peptides of different length and composition, the lamellar phase undergoes a binding transition. Under such conditions, the interlamellar distance is no longer proportional to Phi(-1), but rather to the surface concentration of snaps within the membrane. It also appears that, in the presence of the hydrophobic segment of peptide snaps, the length of the inclusions must be at least equal to the hydrophobic length of the membrane to be active. Experimental results have been precisely fitted to a model of thermally stabilized membranes, decorated with snaps. However, in the presence of inclusions, the parameter describing the interactions between membranes, has to take into account the length of the inclusion to preserve good predictive capabilities.

Full Text

The Full Text of this article is available as a PDF (133.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deber C. M., Li S. C. Peptides in membranes: helicity and hydrophobicity. Biopolymers. 1995;37(5):295–318. doi: 10.1002/bip.360370503. [DOI] [PubMed] [Google Scholar]
  2. Edwards A. M., Ross N. W., Ulmer J. B., Braun P. E. Interaction of myelin basic protein and proteolipid protein. J Neurosci Res. 1989 Jan;22(1):97–102. doi: 10.1002/jnr.490220113. [DOI] [PubMed] [Google Scholar]
  3. Golubovic L, Lubensky TC. Smectic elastic constants of lamellar fluid membrane phases: Crumpling effects. Phys Rev B Condens Matter. 1989 Jun 1;39(16):12110–12133. doi: 10.1103/physrevb.39.12110. [DOI] [PubMed] [Google Scholar]
  4. Greer J. M., Sobel R. A., Sette A., Southwood S., Lees M. B., Kuchroo V. K. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol. 1996 Jan 1;156(1):371–379. [PubMed] [Google Scholar]
  5. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  6. Huschilt J. C., Millman B. M., Davis J. H. Orientation of alpha-helical peptides in a lipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):139–141. doi: 10.1016/0005-2736(89)90534-8. [DOI] [PubMed] [Google Scholar]
  7. Leibler S, Lipowsky R. Complete unbinding and quasi-long-range order in lamellar phases. Phys Rev B Condens Matter. 1987 May 1;35(13):7004–7009. doi: 10.1103/physrevb.35.7004. [DOI] [PubMed] [Google Scholar]
  8. Liu L. P., Deber C. M. Anionic phospholipids modulate peptide insertion into membranes. Biochemistry. 1997 May 6;36(18):5476–5482. doi: 10.1021/bi970030n. [DOI] [PubMed] [Google Scholar]
  9. Marcelja S. Toward a realistic theory of the interaction of membrane inclusions. Biophys J. 1999 Feb;76(2):593–594. doi: 10.1016/S0006-3495(99)77227-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nicot C, Waks M, Ober R, Gulik-Krzywicki T, Urbach W. Squeezing of Oil-Swollen Surfactant Bilayers by a Membrane Protein. Phys Rev Lett. 1996 Oct 14;77(16):3485–3485. doi: 10.1103/PhysRevLett.77.3485. [DOI] [PubMed] [Google Scholar]
  11. Sereda T. J., Mant C. T., Quinn A. M., Hodges R. S. Effect of the alpha-amino group on peptide retention behaviour in reversed-phase chromatography. Determination of the pK(a) values of the alpha-amino group of 19 different N-terminal amino acid residues. J Chromatogr. 1993 Aug 27;646(1):17–30. doi: 10.1016/s0021-9673(99)87003-4. [DOI] [PubMed] [Google Scholar]
  12. Turner M. S., Sens P. Inclusions on fluid membranes anchored to elastic media. Biophys J. 1999 Jan;76(1 Pt 1):564–572. doi: 10.1016/S0006-3495(99)77224-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vacher M., Waks M., Nicot C. Myelin proteins in reverse micelles: tight lipid association required for insertion of the Folch-Pi proteolipid into a membrane-mimetic system. J Neurochem. 1989 Jan;52(1):117–123. doi: 10.1111/j.1471-4159.1989.tb10905.x. [DOI] [PubMed] [Google Scholar]
  14. Weimbs T., Stoffel W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry. 1992 Dec 15;31(49):12289–12296. doi: 10.1021/bi00164a002. [DOI] [PubMed] [Google Scholar]
  15. Zhang Y. P., Lewis R. N., Henry G. D., Sykes B. D., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide. Biochemistry. 1995 Feb 21;34(7):2348–2361. doi: 10.1021/bi00007a031. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES