Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1126–1144. doi: 10.1016/S0006-3495(00)76671-9

Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect.

M R Gunner 1, M A Saleh 1, E Cross 1, A ud-Doula 1, M Wise 1
PMCID: PMC1300716  PMID: 10692303

Abstract

Asymmetry in packing the peptide amide dipole results in larger positive than negative regions in proteins of all folding motifs. The average side chain potential in 305 proteins is 109 +/- 30 mV (2. 5 +/- 0.7 kcal/mol/e). Because the backbone has zero net charge, the non-zero potential is unexpected. The larger oxygen at the negative and smaller proton at the positive end of the amide dipole yield positive potentials because: 1) at allowed phi and psi angles residues come off the backbone into the positive end of their own amide dipole, avoiding the large oxygen; and 2) amide dipoles with their carbonyl oxygen surface exposed and amine proton buried make the protein interior more positive. Twice as many amides have their oxygens exposed than their amine protons. The distribution of acidic and basic residues shows the importance of the bias toward positive backbone potentials. Thirty percent of the Asp, Glu, Lys, and Arg are buried. Sixty percent of buried residues are acids, only 40% bases. The positive backbone potential stabilizes ionization of 20% of the acids by >3 pH units (-4.1 kcal/mol). Only 6.5% of the bases are equivalently stabilized by negative regions. The backbone stabilizes bound anions such as phosphates and rarely stabilizes bound cations.

Full Text

The Full Text of this article is available as a PDF (917.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexov E. G., Gunner M. R. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J. 1997 May;72(5):2075–2093. doi: 10.1016/S0006-3495(97)78851-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  3. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  4. Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Armstrong K. M., Baldwin R. L. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11337–11340. doi: 10.1073/pnas.90.23.11337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  7. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  8. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  9. Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Electrostatic calculations of amino acid titration and electron transfer, Q-AQB-->QAQ-B, in the reaction center. Biophys J. 1995 Jun;68(6):2233–2250. doi: 10.1016/S0006-3495(95)80406-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Churg A. K., Warshel A. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins. Biochemistry. 1986 Apr 8;25(7):1675–1681. doi: 10.1021/bi00355a035. [DOI] [PubMed] [Google Scholar]
  12. Creamer T. P., Rose G. D. Alpha-helix-forming propensities in peptides and proteins. Proteins. 1994 Jun;19(2):85–97. doi: 10.1002/prot.340190202. [DOI] [PubMed] [Google Scholar]
  13. Dao-pin S., Anderson D. E., Baase W. A., Dahlquist F. W., Matthews B. W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry. 1991 Dec 10;30(49):11521–11529. doi: 10.1021/bi00113a006. [DOI] [PubMed] [Google Scholar]
  14. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  15. Fink A. L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct. 1995;24:495–522. doi: 10.1146/annurev.bb.24.060195.002431. [DOI] [PubMed] [Google Scholar]
  16. Gandini D., Gogioso L., Bolognesi M., Bordo D. Patterns in ionizable side chain interactions in protein structures. Proteins. 1996 Apr;24(4):439–449. doi: 10.1002/(SICI)1097-0134(199604)24:4<439::AID-PROT4>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  17. Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
  18. Gunner M. R., Honig B. Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridis reaction center. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9151–9155. doi: 10.1073/pnas.88.20.9151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. He J. J., Quiocho F. A. Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein. Protein Sci. 1993 Oct;2(10):1643–1647. doi: 10.1002/pro.5560021010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hol W. G., Halie L. M., Sander C. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Nature. 1981 Dec 10;294(5841):532–536. doi: 10.1038/294532a0. [DOI] [PubMed] [Google Scholar]
  21. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  22. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  23. Holmes M. A., Stenkamp R. E. Structures of met and azidomet hemerythrin at 1.66 A resolution. J Mol Biol. 1991 Aug 5;220(3):723–737. doi: 10.1016/0022-2836(91)90113-k. [DOI] [PubMed] [Google Scholar]
  24. Huyghues-Despointes B. M., Scholtz J. M., Baldwin R. L. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide. Protein Sci. 1993 Oct;2(10):1604–1611. doi: 10.1002/pro.5560021006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jacobson B. L., Quiocho F. A. Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation. J Mol Biol. 1988 Dec 5;204(3):783–787. doi: 10.1016/0022-2836(88)90369-5. [DOI] [PubMed] [Google Scholar]
  26. James M. N., Sielecki A. R., Brayer G. D., Delbaere L. T., Bauer C. A. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis. J Mol Biol. 1980 Nov 25;144(1):43–88. doi: 10.1016/0022-2836(80)90214-4. [DOI] [PubMed] [Google Scholar]
  27. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  28. Kishan K. V., Zeelen J. P., Noble M. E., Borchert T. V., Wierenga R. K. Comparison of the structures and the crystal contacts of trypanosomal triosephosphate isomerase in four different crystal forms. Protein Sci. 1994 May;3(5):779–787. doi: 10.1002/pro.5560030507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lancaster C. R., Michel H., Honig B., Gunner M. R. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys J. 1996 Jun;70(6):2469–2492. doi: 10.1016/S0006-3495(96)79820-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Langen R., Jensen G. M., Jacob U., Stephens P. J., Warshel A. Protein control of iron-sulfur cluster redox potentials. J Biol Chem. 1992 Dec 25;267(36):25625–25627. [PubMed] [Google Scholar]
  31. Luecke H., Quiocho F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature. 1990 Sep 27;347(6291):402–406. doi: 10.1038/347402a0. [DOI] [PubMed] [Google Scholar]
  32. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  33. McPhalen C. A., Strynadka N. C., James M. N. Calcium-binding sites in proteins: a structural perspective. Adv Protein Chem. 1991;42:77–144. doi: 10.1016/s0065-3233(08)60535-5. [DOI] [PubMed] [Google Scholar]
  34. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  35. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  36. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  37. Novotný J., Bruccoleri R., Karplus M. An analysis of incorrectly folded protein models. Implications for structure predictions. J Mol Biol. 1984 Aug 25;177(4):787–818. doi: 10.1016/0022-2836(84)90049-4. [DOI] [PubMed] [Google Scholar]
  38. Oberoi H., Trikha J., Yuan X., Allewell N. M. Identification and analysis of long-range electrostatic effects in proteins by computer modeling:aspartate transcarbamylase. Proteins. 1996 Jul;25(3):300–314. doi: 10.1002/(SICI)1097-0134(199607)25:3<300::AID-PROT3>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  39. Pace C. N., Grimsley G. R. Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry. 1988 May 3;27(9):3242–3246. doi: 10.1021/bi00409a018. [DOI] [PubMed] [Google Scholar]
  40. Pace C. N., Scholtz J. M. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998 Jul;75(1):422–427. doi: 10.1016/s0006-3495(98)77529-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Padmanabhan S., York E. J., Stewart J. M., Baldwin R. L. Helix propensities of basic amino acids increase with the length of the side-chain. J Mol Biol. 1996 Apr 5;257(3):726–734. doi: 10.1006/jmbi.1996.0197. [DOI] [PubMed] [Google Scholar]
  42. Perona J. J., Tsu C. A., McGrath M. E., Craik C. S., Fletterick R. J. Relocating a negative charge in the binding pocket of trypsin. J Mol Biol. 1993 Apr 5;230(3):934–949. doi: 10.1006/jmbi.1993.1211. [DOI] [PubMed] [Google Scholar]
  43. Quiocho F. A., Sack J. S., Vyas N. K. Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units. Nature. 1987 Oct 8;329(6139):561–564. doi: 10.1038/329561a0. [DOI] [PubMed] [Google Scholar]
  44. Ramachandran G. N., Kolaskar A. S., Ramakrishnan C., Sasisekharan V. The mean geometry of the peptide unit from crystal structure data. Biochim Biophys Acta. 1974 Aug 8;359(2):298–302. doi: 10.1016/0005-2795(74)90228-1. [DOI] [PubMed] [Google Scholar]
  45. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  46. Rashin A. A., Honig B. On the environment of ionizable groups in globular proteins. J Mol Biol. 1984 Mar 15;173(4):515–521. doi: 10.1016/0022-2836(84)90394-2. [DOI] [PubMed] [Google Scholar]
  47. Raychaudhuri S., Younas F., Karplus P. A., Faerman C. H., Ripoll D. R. Backbone makes a significant contribution to the electrostatics of alpha/beta-barrel proteins. Protein Sci. 1997 Sep;6(9):1849–1857. doi: 10.1002/pro.5560060905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  49. Rohlfing D. L., Saunders M. A. Evolutionary processes possibly limiting the kinds of amino acids in protein to twenty: a review. J Theor Biol. 1978 Apr 20;71(4):487–503. doi: 10.1016/0022-5193(78)90320-x. [DOI] [PubMed] [Google Scholar]
  50. Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
  51. Sancho J., Serrano L., Fersht A. R. Histidine residues at the N- and C-termini of alpha-helices: perturbed pKas and protein stability. Biochemistry. 1992 Mar 3;31(8):2253–2258. doi: 10.1021/bi00123a006. [DOI] [PubMed] [Google Scholar]
  52. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  53. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
  54. Sitkoff D., Lockhart D. J., Sharp K. A., Honig B. Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys J. 1994 Dec;67(6):2251–2260. doi: 10.1016/S0006-3495(94)80709-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Spassov V. Z., Ladenstein R., Karshikoff A. D. Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci. 1997 Jun;6(6):1190–1196. doi: 10.1002/pro.5560060607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
  57. Stigter D., Alonso D. O., Dill K. A. Protein stability: electrostatics and compact denatured states. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4176–4180. doi: 10.1073/pnas.88.10.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stites W. E., Gittis A. G., Lattman E. E., Shortle D. In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J Mol Biol. 1991 Sep 5;221(1):7–14. doi: 10.1016/0022-2836(91)80195-z. [DOI] [PubMed] [Google Scholar]
  59. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  60. Swartz P. D., Beck B. W., Ichiye T. Structural origins of redox potentials in Fe-S proteins: electrostatic potentials of crystal structures. Biophys J. 1996 Dec;71(6):2958–2969. doi: 10.1016/S0006-3495(96)79533-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tan Y. J., Oliveberg M., Davis B., Fersht A. R. Perturbed pKA-values in the denatured states of proteins. J Mol Biol. 1995 Dec 15;254(5):980–992. doi: 10.1006/jmbi.1995.0670. [DOI] [PubMed] [Google Scholar]
  62. Uversky V. N., Karnoup A. S., Segel D. J., Seshadri S., Doniach S., Fink A. L. Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J Mol Biol. 1998 May 15;278(4):879–894. doi: 10.1006/jmbi.1998.1741. [DOI] [PubMed] [Google Scholar]
  63. Varadarajan R., Lambright D. G., Boxer S. G. Electrostatic interactions in wild-type and mutant recombinant human myoglobins. Biochemistry. 1989 May 2;28(9):3771–3781. doi: 10.1021/bi00435a022. [DOI] [PubMed] [Google Scholar]
  64. Wada A. The alpha-helix as an electric macro-dipole. Adv Biophys. 1976:1–63. [PubMed] [Google Scholar]
  65. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]
  66. Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
  67. Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
  68. Yang A. S., Honig B. Free energy determinants of secondary structure formation: I. alpha-Helices. J Mol Biol. 1995 Sep 22;252(3):351–365. doi: 10.1006/jmbi.1995.0502. [DOI] [PubMed] [Google Scholar]
  69. Yang A. S., Honig B. Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets. J Mol Biol. 1995 Sep 22;252(3):366–376. doi: 10.1006/jmbi.1995.0503. [DOI] [PubMed] [Google Scholar]
  70. Yang A. S., Honig B. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin. J Mol Biol. 1994 Apr 15;237(5):602–614. doi: 10.1006/jmbi.1994.1258. [DOI] [PubMed] [Google Scholar]
  71. Yao N., Ledvina P. S., Choudhary A., Quiocho F. A. Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Biochemistry. 1996 Feb 20;35(7):2079–2085. doi: 10.1021/bi952686r. [DOI] [PubMed] [Google Scholar]
  72. Zanotti G., Scapin G., Spadon P., Veerkamp J. H., Sacchettini J. C. Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J Biol Chem. 1992 Sep 15;267(26):18541–18550. doi: 10.2210/pdb2hmb/pdb. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES