Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1227–1239. doi: 10.1016/S0006-3495(00)76680-X

Coexpression of alpha and beta subunits of the rod cyclic GMP-gated channel restores native sensitivity to cyclic AMP: role of D604/N1201.

F Pagès 1, M Ildefonse 1, M Ragno 1, S Crouzy 1, N Bennett 1
PMCID: PMC1300725  PMID: 10692312

Abstract

Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding.

Full Text

The Full Text of this article is available as a PDF (177.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenhofen W., Ludwig J., Eismann E., Kraus W., Bönigk W., Kaupp U. B. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9868–9872. doi: 10.1073/pnas.88.21.9868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biel M., Zong X., Ludwig A., Sautter A., Hofmann F. Molecular cloning and expression of the Modulatory subunit of the cyclic nucleotide-gated cation channel. J Biol Chem. 1996 Mar 15;271(11):6349–6355. doi: 10.1074/jbc.271.11.6349. [DOI] [PubMed] [Google Scholar]
  3. Bradley J., Li J., Davidson N., Lester H. A., Zinn K. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8890–8894. doi: 10.1073/pnas.91.19.8890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bucossi G., Nizzari M., Torre V. Single-channel properties of ionic channels gated by cyclic nucleotides. Biophys J. 1997 Mar;72(3):1165–1181. doi: 10.1016/S0006-3495(97)78765-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen T. Y., Peng Y. W., Dhallan R. S., Ahamed B., Reed R. R., Yau K. W. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature. 1993 Apr 22;362(6422):764–767. doi: 10.1038/362764a0. [DOI] [PubMed] [Google Scholar]
  6. Furman R. E., Tanaka J. C. Photoreceptor channel activation: interaction between cAMP and cGMP. Biochemistry. 1989 Apr 4;28(7):2785–2788. doi: 10.1021/bi00433a007. [DOI] [PubMed] [Google Scholar]
  7. Gordon S. E., Brautigan D. L., Zimmerman A. L. Protein phosphatases modulate the apparent agonist affinity of the light-regulated ion channel in retinal rods. Neuron. 1992 Oct;9(4):739–748. doi: 10.1016/0896-6273(92)90036-d. [DOI] [PubMed] [Google Scholar]
  8. Gordon S. E., Oakley J. C., Varnum M. D., Zagotta W. N. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry. 1996 Apr 2;35(13):3994–4001. doi: 10.1021/bi952607b. [DOI] [PubMed] [Google Scholar]
  9. Gordon S. E., Varnum M. D., Zagotta W. N. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron. 1997 Aug;19(2):431–441. doi: 10.1016/s0896-6273(00)80951-4. [DOI] [PubMed] [Google Scholar]
  10. Gordon S. E., Zagotta W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron. 1995 Jan;14(1):177–183. doi: 10.1016/0896-6273(95)90252-x. [DOI] [PubMed] [Google Scholar]
  11. Goulding E. H., Tibbs G. R., Siegelbaum S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature. 1994 Nov 24;372(6504):369–374. doi: 10.1038/372369a0. [DOI] [PubMed] [Google Scholar]
  12. Ildefonse M., Bennett N. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J Membr Biol. 1991 Aug;123(2):133–147. doi: 10.1007/BF01998084. [DOI] [PubMed] [Google Scholar]
  13. Ildefonse M., Crouzy S., Bennett N. Gating of retinal rod cation channel by different nucleotides: comparative study of unitary currents. J Membr Biol. 1992 Oct;130(1):91–104. doi: 10.1007/BF00233741. [DOI] [PubMed] [Google Scholar]
  14. Karpen J. W., Brown R. L. Covalent activation of retinal rod cGMP-gated channels reveals a functional heterogeneity in the ligand binding sites. J Gen Physiol. 1996 Feb;107(2):169–181. doi: 10.1085/jgp.107.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaupp U. B., Niidome T., Tanabe T., Terada S., Bönigk W., Stühmer W., Cook N. J., Kangawa K., Matsuo H., Hirose T. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature. 1989 Dec 14;342(6251):762–766. doi: 10.1038/342762a0. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Körschen H. G., Illing M., Seifert R., Sesti F., Williams A., Gotzes S., Colville C., Müller F., Dosé A., Godde M. A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron. 1995 Sep;15(3):627–636. doi: 10.1016/0896-6273(95)90151-5. [DOI] [PubMed] [Google Scholar]
  18. Liman E. R., Buck L. B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron. 1994 Sep;13(3):611–621. doi: 10.1016/0896-6273(94)90029-9. [DOI] [PubMed] [Google Scholar]
  19. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  20. Liu D. T., Tibbs G. R., Paoletti P., Siegelbaum S. A. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron. 1998 Jul;21(1):235–248. doi: 10.1016/s0896-6273(00)80530-9. [DOI] [PubMed] [Google Scholar]
  21. Liu D. T., Tibbs G. R., Siegelbaum S. A. Subunit stoichiometry of cyclic nucleotide-gated channels and effects of subunit order on channel function. Neuron. 1996 May;16(5):983–990. doi: 10.1016/s0896-6273(00)80121-x. [DOI] [PubMed] [Google Scholar]
  22. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  23. Matthews G., Watanabe S. Activation of single ion channels from toad retinal rod inner segments by cyclic GMP: concentration dependence. J Physiol. 1988 Sep;403:389–405. doi: 10.1113/jphysiol.1988.sp017255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Molokanova E., Trivedi B., Savchenko A., Kramer R. H. Modulation of rod photoreceptor cyclic nucleotide-gated channels by tyrosine phosphorylation. J Neurosci. 1997 Dec 1;17(23):9068–9076. doi: 10.1523/JNEUROSCI.17-23-09068.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nizzari M., Sesti F., Giraudo M. T., Virginio C., Cattaneo A., Torre V. Single-channel properties of cloned cGMP-activated channels from retinal rods. Proc Biol Sci. 1993 Oct 22;254(1339):69–74. doi: 10.1098/rspb.1993.0128. [DOI] [PubMed] [Google Scholar]
  26. Paoletti P., Young E. C., Siegelbaum S. A. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J Gen Physiol. 1999 Jan;113(1):17–34. doi: 10.1085/jgp.113.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Picco C., Sanfilippo C., Gavazzo P., Menini A. Modulation by internal protons of native cyclic nucleotide-gated channels from retinal rods. J Gen Physiol. 1996 Oct;108(4):265–276. doi: 10.1085/jgp.108.4.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Picones A., Korenbrot J. I. Spontaneous, ligand-independent activity of the cGMP-gated ion channels in cone photoreceptors of fish. J Physiol. 1995 Jun 15;485(Pt 3):699–714. doi: 10.1113/jphysiol.1995.sp020763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubin M. M., Changeux J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol. 1966 Nov 14;21(2):265–274. doi: 10.1016/0022-2836(66)90097-0. [DOI] [PubMed] [Google Scholar]
  30. Ruiz M. L., Karpen J. W. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature. 1997 Sep 25;389(6649):389–392. doi: 10.1038/38744. [DOI] [PubMed] [Google Scholar]
  31. Ruiz M., Karpen J. W. Opening mechanism of a cyclic nucleotide-gated channel based on analysis of single channels locked in each liganded state. J Gen Physiol. 1999 Jun;113(6):873–895. doi: 10.1085/jgp.113.6.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sautter A., Zong X., Hofmann F., Biel M. An isoform of the rod photoreceptor cyclic nucleotide-gated channel beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4696–4701. doi: 10.1073/pnas.95.8.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Serre V., Ildefonse M., Bennett N. Effects of cysteine modification on the activity of the cGMP-gated channel from retinal rods. J Membr Biol. 1995 Jul;146(2):145–162. doi: 10.1007/BF00238005. [DOI] [PubMed] [Google Scholar]
  34. Shabb J. B., Corbin J. D. Cyclic nucleotide-binding domains in proteins having diverse functions. J Biol Chem. 1992 Mar 25;267(9):5723–5726. [PubMed] [Google Scholar]
  35. Shammat I. M., Gordon S. E. Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels. Neuron. 1999 Aug;23(4):809–819. doi: 10.1016/s0896-6273(01)80038-6. [DOI] [PubMed] [Google Scholar]
  36. Sunderman E. R., Zagotta W. N. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999 May;113(5):621–640. doi: 10.1085/jgp.113.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tanaka J. C., Eccleston J. F., Furman R. E. Photoreceptor channel activation by nucleotide derivatives. Biochemistry. 1989 Apr 4;28(7):2776–2784. doi: 10.1021/bi00433a006. [DOI] [PubMed] [Google Scholar]
  38. Taylor W. R., Baylor D. A. Conductance and kinetics of single cGMP-activated channels in salamander rod outer segments. J Physiol. 1995 Mar 15;483(Pt 3):567–582. doi: 10.1113/jphysiol.1995.sp020607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tibbs G. R., Goulding E. H., Siegelbaum S. A. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature. 1997 Apr 10;386(6625):612–615. doi: 10.1038/386612a0. [DOI] [PubMed] [Google Scholar]
  40. Torre V., Straforini M., Sesti F., Lamb T. D. Different channel-gating properties of two classes of cyclic GMP-activated channel in vertebrate photoreceptors. Proc Biol Sci. 1992 Dec 22;250(1329):209–215. doi: 10.1098/rspb.1992.0151. [DOI] [PubMed] [Google Scholar]
  41. Varnum M. D., Black K. D., Zagotta W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron. 1995 Sep;15(3):619–625. doi: 10.1016/0896-6273(95)90150-7. [DOI] [PubMed] [Google Scholar]
  42. Varnum M. D., Zagotta W. N. Subunit interactions in the activation of cyclic nucleotide-gated ion channels. Biophys J. 1996 Jun;70(6):2667–2679. doi: 10.1016/S0006-3495(96)79836-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zimmerman A. L., Karpen J. W., Baylor D. A. Hindered diffusion in excised membrane patches from retinal rod outer segments. Biophys J. 1988 Aug;54(2):351–355. doi: 10.1016/S0006-3495(88)82966-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zong X., Zucker H., Hofmann F., Biel M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 1998 Jan 15;17(2):353–362. doi: 10.1093/emboj/17.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES