Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1531–1540. doi: 10.1016/S0006-3495(00)76705-1

Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.

F von Germar 1, A Barth 1, W Mäntele 1
PMCID: PMC1300750  PMID: 10692337

Abstract

Changes in the vibrational spectrum of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding were recorded in H(2)O and (2)H(2)O at -7 degrees C and pH 7.0. The reaction cycle was triggered by the photochemical release of nucleotides (ATP, ADP, and AMP-PNP) from a biologically inactive precursor (caged ATP, P(3)-1-(2-nitrophenyl) adenosine 5'-triphosphate, and related caged compounds). Infrared absorbance changes due to ATP release and two steps of the Ca(2+)-ATPase reaction cycle, ATP binding and phosphorylation, were followed in real time. Under the conditions used in our experiments, the rate of ATP binding was limited by the rate of ATP release (k(app) congruent with 3 s(-1) in H(2)O and k(app) congruent with 7 s(-1) in (2)H(2)O). Bands in the amide I and II regions of the infrared spectrum show that the conformation of the Ca(2+)-ATPase changes upon nucleotide binding. The observation of bands in the amide I region can be assigned to perturbations of alpha-helical and beta-sheet structures. According to similar band profiles in the nucleotide binding spectra, ATP, AMP-PNP, and ADP induce similar conformational changes. However, subtle differences between ATP and AMP-PNP are observed; these are most likely due to the protonation state of the gamma-phosphate group. Differences between the ATP and ADP binding spectra indicate the significance of the gamma-phosphate group in the interactions between the Ca(2+)-ATPase and the nucleotide. Nucleotide binding affects Asp or Glu residues, and bands characteristic of their protonated side chains are observed at 1716 cm(-1) (H(2)O) and 1706 cm(-1) ((2)H(2)O) and seem to depend on the charge of the phosphate groups. Bands at 1516 cm(-1) (H(2)O) and 1514 cm(-1) ((2)H(2)O) are tentatively assigned to a protonated Tyr residue affected by nucleotide binding. Possible changes in Arg, Trp, and Lys absorption and in the nucleoside are discussed. The spectra are compared with those of nucleotide binding to arginine kinase, creatine kinase, and H-ras P21.

Full Text

The Full Text of this article is available as a PDF (132.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P. Dissection of the functional domains of the sarcoplasmic reticulum Ca(2+)-ATPase by site-directed mutagenesis. Biosci Rep. 1995 Oct;15(5):243–261. doi: 10.1007/BF01788358. [DOI] [PubMed] [Google Scholar]
  2. Andersen J. P. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim Biophys Acta. 1989 Jan 18;988(1):47–72. doi: 10.1016/0304-4157(89)90003-8. [DOI] [PubMed] [Google Scholar]
  3. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  4. Barth A., Mäntele W. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra. Biophys J. 1998 Jul;75(1):538–544. doi: 10.1016/S0006-3495(98)77543-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barth A., Mäntele W., Kreutz W. Infrared spectroscopic signals arising from ligand binding and conformational changes in the catalytic cycle of sarcoplasmic reticulum calcium ATPase. Biochim Biophys Acta. 1991 Mar 1;1057(1):115–123. doi: 10.1016/s0005-2728(05)80091-x. [DOI] [PubMed] [Google Scholar]
  6. Barth A., von Germar F., Kreutz W., Mäntele W. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work. J Biol Chem. 1996 Nov 29;271(48):30637–30646. doi: 10.1074/jbc.271.48.30637. [DOI] [PubMed] [Google Scholar]
  7. Champeil P., Menguy T., Soulié S., Juul B., de Gracia A. G., Rusconi F., Falson P., Denoroy L., Henao F., le Maire M. Characterization of a protease-resistant domain of the cytosolic portion of sarcoplasmic reticulum Ca2+-ATPase. Nucleotide- and metal-binding sites. J Biol Chem. 1998 Mar 20;273(12):6619–6631. doi: 10.1074/jbc.273.12.6619. [DOI] [PubMed] [Google Scholar]
  8. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  9. Clarke D. M., Loo T. W., MacLennan D. H. Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Dec 25;265(36):22223–22227. [PubMed] [Google Scholar]
  10. De Meis L., Hasselbach W. Acetyl phosphate as substrate for Ca 2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions. J Biol Chem. 1971 Aug 10;246(15):4759–4763. [PubMed] [Google Scholar]
  11. Dollinger G., Eisenstein L., Lin S. L., Nakanishi K., Termini J. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry. 1986 Oct 21;25(21):6524–6533. doi: 10.1021/bi00369a028. [DOI] [PubMed] [Google Scholar]
  12. Fabian H., Schultz C., Backmann J., Hahn U., Saenger W., Mantsch H. H., Naumann D. Impact of point mutations on the structure and thermal stability of ribonuclease T1 in aqueous solution probed by Fourier transform infrared spectroscopy. Biochemistry. 1994 Sep 6;33(35):10725–10730. doi: 10.1021/bi00201a021. [DOI] [PubMed] [Google Scholar]
  13. Larsen M., Willett R., Yount R. G. Imidodiphosphate and pyrophosphate: possible biological significance of similar structures. Science. 1969 Dec 19;166(3912):1510–1511. doi: 10.1126/science.166.3912.1510. [DOI] [PubMed] [Google Scholar]
  14. MacLennan D. H., Rice W. J., Green N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem. 1997 Nov 14;272(46):28815–28818. doi: 10.1074/jbc.272.46.28815. [DOI] [PubMed] [Google Scholar]
  15. McIntosh D. B., Woolley D. G., Vilsen B., Andersen J. P. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J Biol Chem. 1996 Oct 18;271(42):25778–25789. doi: 10.1074/jbc.271.42.25778. [DOI] [PubMed] [Google Scholar]
  16. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  17. Nørby J. G., Esmann M. Nucleotide binding to Na,K-ATPase. Effect of ionic strength and charge. Ann N Y Acad Sci. 1997 Nov 3;834:410–411. doi: 10.1111/j.1749-6632.1997.tb52285.x. [DOI] [PubMed] [Google Scholar]
  18. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pickart C. M., Jencks W. P. Energetics of the calcium-transporting ATPase. J Biol Chem. 1984 Feb 10;259(3):1629–1643. [PubMed] [Google Scholar]
  20. Raimbault C., Besson F., Buchet R. Conformational changes of arginine kinase induced by photochemical release of nucleotides from caged nucleotides--an infrared difference-spectroscopy investigation. Eur J Biochem. 1997 Mar 1;244(2):343–351. doi: 10.1111/j.1432-1033.1997.00343.x. [DOI] [PubMed] [Google Scholar]
  21. Raimbault C., Buchet R., Vial C. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study. Eur J Biochem. 1996 Aug 15;240(1):134–142. doi: 10.1111/j.1432-1033.1996.0134h.x. [DOI] [PubMed] [Google Scholar]
  22. Rothschild K. J., Roepe P., Ahl P. L., Earnest T. N., Bogomolni R. A., Das Gupta S. K., Mulliken C. M., Herzfeld J. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. Proc Natl Acad Sci U S A. 1986 Jan;83(2):347–351. doi: 10.1073/pnas.83.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taylor J. S. Sarcoplasmic reticulum ATPase catalyzes hydrolysis of adenyl-5'-yl imidodiphosphate. J Biol Chem. 1981 Oct 10;256(19):9793–9795. [PubMed] [Google Scholar]
  24. Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]
  25. Wakabayashi S., Shigekawa M. Mechanism for activation of the 4-nitrobenzo-2-oxa-1,3-diazole-labeled sarcoplasmic reticulum ATPase by Ca2+ and its modulation by nucleotides. Biochemistry. 1990 Aug 7;29(31):7309–7318. doi: 10.1021/bi00483a022. [DOI] [PubMed] [Google Scholar]
  26. Wittinghofer A., Pai E. F. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci. 1991 Oct;16(10):382–387. doi: 10.1016/0968-0004(91)90156-p. [DOI] [PubMed] [Google Scholar]
  27. Yount R. G., Babcock D., Ballantyne W., Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. doi: 10.1021/bi00789a009. [DOI] [PubMed] [Google Scholar]
  28. Zhou G., Somasundaram T., Blanc E., Parthasarathy G., Ellington W. R., Chapman M. S. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8449–8454. doi: 10.1073/pnas.95.15.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES