Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1606–1619. doi: 10.1016/S0006-3495(00)76713-0

Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

P Schuck 1
PMCID: PMC1300758  PMID: 10692345

Abstract

A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.

Full Text

The Full Text of this article is available as a PDF (236.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloomfield V., Dalton W. O., Van Holde K. E. Frictional coefficients of multisubunit structures. I. Theory. Biopolymers. 1967 Feb;5(2):135–148. doi: 10.1002/bip.1967.360050202. [DOI] [PubMed] [Google Scholar]
  2. Cann J. R., Kegeles G. Theory of sedimentation for kinetically controlled dimerization reactions. Biochemistry. 1974 Apr 23;13(9):1868–1874. doi: 10.1021/bi00706a015. [DOI] [PubMed] [Google Scholar]
  3. Claverie J. M., Dreux H., Cohen R. Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers. 1975 Aug;14(8):1685–1700. doi: 10.1002/bip.1975.360140811. [DOI] [PubMed] [Google Scholar]
  4. Claverie J. M. Sedimentation of generalized systems of interacting particles. III. Concentration-dependent sedimentation and extension to other transport methods. Biopolymers. 1976 May;15(5):843–857. doi: 10.1002/bip.1976.360150504. [DOI] [PubMed] [Google Scholar]
  5. Cox D. J. Computer simulation of sedimentation in the ultracentrifuge. IV. Velocity sedimentation of self-associating solutes. Arch Biochem Biophys. 1969 Jan;129(1):106–123. doi: 10.1016/0003-9861(69)90157-x. [DOI] [PubMed] [Google Scholar]
  6. Demeler B., Saber H. Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. Biophys J. 1998 Jan;74(1):444–454. doi: 10.1016/S0006-3495(98)77802-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demeler B., Saber H., Hansen J. C. Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J. 1997 Jan;72(1):397–407. doi: 10.1016/S0006-3495(97)78680-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frigon R. P., Timasheff S. N. Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry. Biochemistry. 1975 Oct 21;14(21):4559–4566. doi: 10.1021/bi00692a001. [DOI] [PubMed] [Google Scholar]
  9. Gabriel O., Gersten D. M. Staining for enzymatic activity after gel electrophoresis, I. Anal Biochem. 1992 May 15;203(1):1–21. doi: 10.1016/0003-2697(92)90036-7. [DOI] [PubMed] [Google Scholar]
  10. Gilbert L. M., Gilbert G. A. Sedimentation velocity measurement of protein association. Methods Enzymol. 1973;27:273–296. doi: 10.1016/s0076-6879(73)27014-3. [DOI] [PubMed] [Google Scholar]
  11. Golz A., Joachims H. Z., Netzer A., Westerman S. T., Gilbert L. M. Pneumoparotitis: diagnosis by computed tomography. Am J Otolaryngol. 1999 Jan-Feb;20(1):68–71. doi: 10.1016/s0196-0709(99)90055-8. [DOI] [PubMed] [Google Scholar]
  12. HANLON S., LAMERS K., LAUTERBACH G., JOHNSON R., SCHACHMAN H. K. Ultracentrifuge studies with absorption optics. I. An automatic photoelectric scanning absorption system. Arch Biochem Biophys. 1962 Oct;99:157–174. doi: 10.1016/0003-9861(62)90258-8. [DOI] [PubMed] [Google Scholar]
  13. Mächtle W. High-resolution, submicron particle size distribution analysis using gravitational-sweep sedimentation. Biophys J. 1999 Feb;76(2):1080–1091. doi: 10.1016/S0006-3495(99)77273-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohkuma S., Noguchi H., Amano F., Mizuno D., Yasuda T. Synthesis of apoferritin in mouse peritoneal macrophages. Characterization of 20 S particles. J Biochem. 1976 Jun;79(6):1365–1376. doi: 10.1093/oxfordjournals.jbchem.a131191. [DOI] [PubMed] [Google Scholar]
  15. Philo J. S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J. 1997 Jan;72(1):435–444. doi: 10.1016/S0006-3495(97)78684-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rivas G., Stafford W., Minton A. P. Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. Methods. 1999 Oct;19(2):194–212. doi: 10.1006/meth.1999.0851. [DOI] [PubMed] [Google Scholar]
  17. SCHACHMAN H. K., GROPPER L., HANLON S., PUTNEY F. Ultracentrifuge studies with absorption optics. II. Incorporation of a monochromator and its application to the study of proteins and interacting systems. Arch Biochem Biophys. 1962 Oct;99:175–190. doi: 10.1016/0003-9861(62)90259-x. [DOI] [PubMed] [Google Scholar]
  18. Schuck P., Demeler B. Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J. 1999 Apr;76(4):2288–2296. doi: 10.1016/S0006-3495(99)77384-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schuck P., MacPhee C. E., Howlett G. J. Determination of sedimentation coefficients for small peptides. Biophys J. 1998 Jan;74(1):466–474. doi: 10.1016/S0006-3495(98)77804-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schuck P. Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J. 1998 Sep;75(3):1503–1512. doi: 10.1016/S0006-3495(98)74069-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schuck P. Sedimentation equilibrium analysis of interference optical data by systematic noise decomposition. Anal Biochem. 1999 Aug 1;272(2):199–208. doi: 10.1006/abio.1999.4172. [DOI] [PubMed] [Google Scholar]
  22. Schuster T. M., Toedt J. M. New revolutions in the evolution of analytical ultracentrifugation. Curr Opin Struct Biol. 1996 Oct;6(5):650–658. doi: 10.1016/s0959-440x(96)80032-7. [DOI] [PubMed] [Google Scholar]
  23. Stafford WF. Sedimentation velocity spins a new weave for an old fabric. Curr Opin Biotechnol. 1997 Feb 1;8(1):14–24. doi: 10.1016/s0958-1669(97)80152-8. [DOI] [PubMed] [Google Scholar]
  24. Stefanini S., Chiancone E., Arosio P., Finazzi-Agrò A., Antonini E. Structural heterogeneity and subunit composition of horse ferritins. Biochemistry. 1982 May 11;21(10):2293–2299. doi: 10.1021/bi00539a004. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES