Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1725–1735. doi: 10.1016/s0006-3495(00)76724-5

Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells.

A B Mathur 1, G A Truskey 1, W M Reichert 1
PMCID: PMC1300769  PMID: 10733955

Abstract

This paper describes the combined use of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRFM) to examine the transmission of force from the apical cell membrane to the basal cell membrane. A Bioscope AFM was mounted on an inverted microscope, the stage of which was configured for TIRFM imaging of fluorescently labeled human umbilical vein endothelial cells (HUVECs). Variable-angle TIRFM experiments were conducted to calibrate the coupling angle with the depth of penetration of the evanescent wave. A measure of cellular mechanical properties was obtained by collecting a set of force curves over the entire apical cell surface. A linear regression fit of the force-indentation curves to an elastic model yields an elastic modulus of 7.22 +/- 0. 46 kPa over the nucleus, 2.97 +/- 0.79 kPa over the cell body in proximity to the nucleus, and 1.27 +/- 0.36 kPa on the cell body near the edge. Stress transmission was investigated by imaging the response of the basal surface to localized force application over the apical surface. The focal contacts changed in position and contact area when forces of 0.3-0.5 nN were applied. There was a significant increase in focal contact area when the force was removed (p < 0.01) from the nucleus as compared to the contact area before force application. There was no significant change in focal contact coverage area before and after force application over the edge. The results suggest that cells transfer localized stress from the apical to the basal surface globally, resulting in rearrangement of contacts on the basal surface.

Full Text

The Full Text of this article is available as a PDF (456.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A-Hassan E., Heinz W. F., Antonik M. D., D'Costa N. P., Nageswaran S., Schoenenberger C. A., Hoh J. H. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J. 1998 Mar;74(3):1564–1578. doi: 10.1016/S0006-3495(98)77868-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod D., Burghardt T. P., Thompson N. L. Total internal reflection fluorescence. Annu Rev Biophys Bioeng. 1984;13:247–268. doi: 10.1146/annurev.bb.13.060184.001335. [DOI] [PubMed] [Google Scholar]
  3. Barbee K. A., Davies P. F., Lal R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res. 1994 Jan;74(1):163–171. doi: 10.1161/01.res.74.1.163. [DOI] [PubMed] [Google Scholar]
  4. Bausch A. R., Ziemann F., Boulbitch A. A., Jacobson K., Sackmann E. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J. 1998 Oct;75(4):2038–2049. doi: 10.1016/S0006-3495(98)77646-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bronkhorst P. J., Streekstra G. J., Grimbergen J., Nijhof E. J., Sixma J. J., Brakenhoff G. J. A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys J. 1995 Nov;69(5):1666–1673. doi: 10.1016/S0006-3495(95)80084-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burmeister J. S., Olivier L. A., Reichert W. M., Truskey G. A. Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. Biomaterials. 1998 Mar;19(4-5):307–325. doi: 10.1016/s0142-9612(97)00109-9. [DOI] [PubMed] [Google Scholar]
  7. Burmeister J. S., Truskey G. A., Reichert W. M. Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell/substrate contacts. J Microsc. 1994 Jan;173(Pt 1):39–51. doi: 10.1111/j.1365-2818.1994.tb03426.x. [DOI] [PubMed] [Google Scholar]
  8. Chang L., Kious T., Yorgancioglu M., Keller D., Pfeiffer J. Cytoskeleton of living, unstained cells imaged by scanning force microscopy. Biophys J. 1993 Apr;64(4):1282–1286. doi: 10.1016/S0006-3495(93)81493-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies P. F., Robotewskyj A., Griem M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest. 1994 May;93(5):2031–2038. doi: 10.1172/JCI117197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans E. A. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol. 1989;173:3–35. doi: 10.1016/s0076-6879(89)73003-2. [DOI] [PubMed] [Google Scholar]
  12. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heidemann S. R., Kaech S., Buxbaum R. E., Matus A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol. 1999 Apr 5;145(1):109–122. doi: 10.1083/jcb.145.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henderson E., Sakaguchi D. S. Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope. Neuroimage. 1993 Sep;1(2):145–150. doi: 10.1006/nimg.1993.1007. [DOI] [PubMed] [Google Scholar]
  16. Hochmuth F. M., Shao J. Y., Dai J., Sheetz M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J. 1996 Jan;70(1):358–369. doi: 10.1016/S0006-3495(96)79577-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hofmann U. G., Rotsch C., Parak W. J., Radmacher M. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol. 1997 Jul;119(2):84–91. doi: 10.1006/jsbi.1997.3868. [DOI] [PubMed] [Google Scholar]
  18. Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
  19. Ingber D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–599. doi: 10.1146/annurev.physiol.59.1.575. [DOI] [PubMed] [Google Scholar]
  20. Kim D. W., Gotlieb A. I., Langille B. L. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis. 1989 Jul-Aug;9(4):439–445. doi: 10.1161/01.atv.9.4.439. [DOI] [PubMed] [Google Scholar]
  21. Maniotis A. J., Chen C. S., Ingber D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849–854. doi: 10.1073/pnas.94.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olivier L. A., Yen J., Reichert W. M., Truskey G. A. Short-term cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol Prog. 1999 Jan-Feb;15(1):33–42. doi: 10.1021/bp980107e. [DOI] [PubMed] [Google Scholar]
  23. Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Radmacher M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag. 1997 Mar-Apr;16(2):47–57. doi: 10.1109/51.582176. [DOI] [PubMed] [Google Scholar]
  25. Reichert W. M., Truskey G. A. Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence. J Cell Sci. 1990 Jun;96(Pt 2):219–230. doi: 10.1242/jcs.96.2.219. [DOI] [PubMed] [Google Scholar]
  26. Ricci D., Tedesco M., Grattarola M. Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy. Microsc Res Tech. 1997 Feb 1;36(3):165–171. doi: 10.1002/(SICI)1097-0029(19970201)36:3<165::AID-JEMT4>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  27. Rotsch C., Braet F., Wisse E., Radmacher M. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int. 1997 Nov;21(11):685–696. doi: 10.1006/cbir.1997.0213. [DOI] [PubMed] [Google Scholar]
  28. Rotsch C., Jacobson K., Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):921–926. doi: 10.1073/pnas.96.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato M., Theret D. P., Wheeler L. T., Ohshima N., Nerem R. M. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng. 1990 Aug;112(3):263–268. doi: 10.1115/1.2891183. [DOI] [PubMed] [Google Scholar]
  30. Sheetz M. P., Dai J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol. 1996 Mar;6(3):85–89. doi: 10.1016/0962-8924(96)80993-7. [DOI] [PubMed] [Google Scholar]
  31. Simson D. A., Ziemann F., Strigl M., Merkel R. Micropipet-based pico force transducer: in depth analysis and experimental verification. Biophys J. 1998 Apr;74(4):2080–2088. doi: 10.1016/S0006-3495(98)77915-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stuart J. K., Hlady V. Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements. Biophys J. 1999 Jan;76(1 Pt 1):500–508. doi: 10.1016/S0006-3495(99)77218-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Svoboda K., Schmidt C. F., Branton D., Block S. M. Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J. 1992 Sep;63(3):784–793. doi: 10.1016/S0006-3495(92)81644-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Theret D. P., Levesque M. J., Sato M., Nerem R. M., Wheeler L. T. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng. 1988 Aug;110(3):190–199. doi: 10.1115/1.3108430. [DOI] [PubMed] [Google Scholar]
  35. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  36. Wang N., Ingber D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J. 1994 Jun;66(6):2181–2189. doi: 10.1016/S0006-3495(94)81014-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang N., Ingber D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):327–335. doi: 10.1139/o95-041. [DOI] [PubMed] [Google Scholar]
  38. Wechezak A. R., Wight T. N., Viggers R. F., Sauvage L. R. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J Cell Physiol. 1989 Apr;139(1):136–146. doi: 10.1002/jcp.1041390120. [DOI] [PubMed] [Google Scholar]
  39. Yamada K. M., Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 1995 Oct;7(5):681–689. doi: 10.1016/0955-0674(95)80110-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES