Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2364–2381. doi: 10.1016/S0006-3495(00)76781-6

Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics.

B Corry 1, S Kuyucak 1, S H Chung 1
PMCID: PMC1300826  PMID: 10777733

Abstract

We test the validity of the mean-field approximation in Poisson-Nernst-Planck theory by contrasting its predictions with those of Brownian dynamics simulations in schematic cylindrical channels and in a realistic potassium channel. Equivalence of the two theories in bulk situations is demonstrated in a control study. In simple cylindrical channels, considerable differences are found between the two theories with regard to the concentration profiles in the channel and its conductance properties. These differences are at a maximum in narrow channels with a radius smaller than the Debye length and diminish with increasing radius. Convergence occurs when the channel radius is over 2 Debye lengths. These tests unequivocally demonstrate that the mean-field approximation in the Poisson-Nernst-Planck theory breaks down in narrow ion channels that have radii smaller than the Debye length.

Full Text

The Full Text of this article is available as a PDF (314.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bek S., Jakobsson E. Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. Biophys J. 1994 Apr;66(4):1028–1038. doi: 10.1016/S0006-3495(94)80884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen D. P., Xu L., Tripathy A., Meissner G., Eisenberg B. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. Biophys J. 1999 Mar;76(3):1346–1366. doi: 10.1016/S0006-3495(99)77297-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen D., Lear J., Eisenberg B. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J. 1997 Jan;72(1):97–116. doi: 10.1016/S0006-3495(97)78650-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung S. H., Allen T. W., Hoyles M., Kuyucak S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys J. 1999 Nov;77(5):2517–2533. doi: 10.1016/S0006-3495(99)77087-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung S. H., Hoyles M., Allen T., Kuyucak S. Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys J. 1998 Aug;75(2):793–809. doi: 10.1016/S0006-3495(98)77569-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper K. E., Gates P. Y., Eisenberg R. S. Surmounting barriers in ionic channels. Q Rev Biophys. 1988 Aug;21(3):331–364. doi: 10.1017/s0033583500004480. [DOI] [PubMed] [Google Scholar]
  7. Cooper K., Jakobsson E., Wolynes P. The theory of ion transport through membrane channels. Prog Biophys Mol Biol. 1985;46(1):51–96. doi: 10.1016/0079-6107(85)90012-4. [DOI] [PubMed] [Google Scholar]
  8. Corry B., Kuyucak S., Chung S. H. Test of Poisson-Nernst-Planck theory in ion channels. J Gen Physiol. 1999 Oct;114(4):597–599. doi: 10.1085/jgp.114.4.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg R. S. Computing the field in proteins and channels. J Membr Biol. 1996 Mar;150(1):1–25. doi: 10.1007/s002329900026. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg R. S. From structure to function in open ionic channels. J Membr Biol. 1999 Sep 1;171(1):1–24. doi: 10.1007/s002329900554. [DOI] [PubMed] [Google Scholar]
  12. Hall J. E. Access resistance of a small circular pore. J Gen Physiol. 1975 Oct;66(4):531–532. doi: 10.1085/jgp.66.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoyles M., Kuyucak S., Chung S. H. Energy barrier presented to ions by the vestibule of the biological membrane channel. Biophys J. 1996 Apr;70(4):1628–1642. doi: 10.1016/S0006-3495(96)79726-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakobsson E., Chiu S. W. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels. Biophys J. 1987 Jul;52(1):33–45. doi: 10.1016/S0006-3495(87)83186-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kurnikova M. G., Coalson R. D., Graf P., Nitzan A. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Biophys J. 1999 Feb;76(2):642–656. doi: 10.1016/S0006-3495(99)77232-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levitt D. G. General continuum theory for multiion channel. I. Theory. Biophys J. 1991 Feb;59(2):271–277. doi: 10.1016/S0006-3495(91)82220-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levitt D. G. General continuum theory for multiion channel. II. Application to acetylcholine channel. Biophys J. 1991 Feb;59(2):278–288. doi: 10.1016/S0006-3495(91)82221-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levitt D. G. Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. Annu Rev Biophys Biophys Chem. 1986;15:29–57. doi: 10.1146/annurev.bb.15.060186.000333. [DOI] [PubMed] [Google Scholar]
  19. Levitt D. G. Modeling of ion channels. J Gen Physiol. 1999 Jun;113(6):789–794. doi: 10.1085/jgp.113.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li S. C., Hoyles M., Kuyucak S., Chung S. H. Brownian dynamics study of ion transport in the vestibule of membrane channels. Biophys J. 1998 Jan;74(1):37–47. doi: 10.1016/S0006-3495(98)77764-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCleskey E. W. Calcium channel permeation: A field in flux. J Gen Physiol. 1999 Jun;113(6):765–772. doi: 10.1085/jgp.113.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller C. Ionic hopping defended. J Gen Physiol. 1999 Jun;113(6):783–787. doi: 10.1085/jgp.113.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moy G., Corry B., Kuyucak S., Chung S. H. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J. 2000 May;78(5):2349–2363. doi: 10.1016/S0006-3495(00)76780-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nonner W., Chen D. P., Eisenberg B. Progress and prospects in permeation. J Gen Physiol. 1999 Jun;113(6):773–782. doi: 10.1085/jgp.113.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nonner W., Eisenberg B. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. Biophys J. 1998 Sep;75(3):1287–1305. doi: 10.1016/S0006-3495(98)74048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rae J. L., Levis R. A., Eisenberg R. S. Ionic channels in ocular epithelia. Ion Channels. 1988;1:283–327. doi: 10.1007/978-1-4615-7302-9_8. [DOI] [PubMed] [Google Scholar]
  27. Roux B., Karplus M. Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 1994;23:731–761. doi: 10.1146/annurev.bb.23.060194.003503. [DOI] [PubMed] [Google Scholar]
  28. Syganow A., von Kitzing E. (In)validity of the constant field and constant currents assumptions in theories of ion transport. Biophys J. 1999 Feb;76(2):768–781. doi: 10.1016/S0006-3495(99)77242-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES