Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2392–2404. doi: 10.1016/S0006-3495(00)76783-X

Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study.

G M Faber 1, Y Rudy 1
PMCID: PMC1300828  PMID: 10777735

Abstract

Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the Luo-Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in two phases, a rapid phase without Na(+) accumulation and a slower phase that depends on [Na(+)](i). 2) The rapid APD shortening is due to incomplete deactivation (accumulation) of I(Ks). 3) The slow phase is due to increased repolarizing currents I(NaK) and reverse-mode I(NaCa), secondary to elevated [Na(+)](i). 4) Na(+)-overload slows the rate of AP depolarization, allowing time for greater I(Ca(L)) activation; it also enhances reverse-mode I(NaCa). The resulting increased Ca(2+) influx triggers a greater [Ca(2+)](i) transient. 5) Reverse-mode I(NaCa) alone can trigger Ca(2+) release in a voltage and [Na(+)](i)-dependent manner. 6) During I(NaK) block, Na(+) and Ca(2+) accumulate and APD shortens due to enhanced reverse-mode I(NaCa); contribution of I(K(Na)) to APD shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na(+)-overload acts to enhance inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca(2+)](i) (secondary to Na(+)-overload) also predisposes the myocardium to arrhythmogenic delayed afterdepolarizations.

Full Text

The Full Text of this article is available as a PDF (219.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett P. B., Yazawa K., Makita N., George A. L., Jr Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995 Aug 24;376(6542):683–685. doi: 10.1038/376683a0. [DOI] [PubMed] [Google Scholar]
  2. Berlin J. R., Cannell M. B., Lederer W. J. Regulation of twitch tension in sheep cardiac Purkinje fibers during calcium overload. Am J Physiol. 1987 Dec;253(6 Pt 2):H1540–H1547. doi: 10.1152/ajpheart.1987.253.6.H1540. [DOI] [PubMed] [Google Scholar]
  3. Bers D. M., Christensen D. M., Nguyen T. X. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction? J Mol Cell Cardiol. 1988 May;20(5):405–414. doi: 10.1016/s0022-2828(88)80132-9. [DOI] [PubMed] [Google Scholar]
  4. Brill D. M., Wasserstrom J. A. Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers. Circ Res. 1986 Jan;58(1):109–119. doi: 10.1161/01.res.58.1.109. [DOI] [PubMed] [Google Scholar]
  5. Carl S. L., Felix K., Caswell A. H., Brandt N. R., Ball W. J., Jr, Vaghy P. L., Meissner G., Ferguson D. G. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995 May;129(3):673–682. doi: 10.1083/jcb.129.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmeliet E. A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res. 1992 May;26(5):433–442. doi: 10.1093/cvr/26.5.433. [DOI] [PubMed] [Google Scholar]
  7. Chandra R., Starmer C. F., Grant A. O. Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol. 1998 May;274(5 Pt 2):H1643–H1654. doi: 10.1152/ajpheart.1998.274.5.H1643. [DOI] [PubMed] [Google Scholar]
  8. Clancy C. E., Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature. 1999 Aug 5;400(6744):566–569. doi: 10.1038/23034. [DOI] [PubMed] [Google Scholar]
  9. Cohen C. J., Fozzard H. A., Sheu S. S. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res. 1982 May;50(5):651–662. doi: 10.1161/01.res.50.5.651. [DOI] [PubMed] [Google Scholar]
  10. Dumaine R., Wang Q., Keating M. T., Hartmann H. A., Schwartz P. J., Brown A. M., Kirsch G. E. Multiple mechanisms of Na+ channel--linked long-QT syndrome. Circ Res. 1996 May;78(5):916–924. doi: 10.1161/01.res.78.5.916. [DOI] [PubMed] [Google Scholar]
  11. Ellis D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J Physiol. 1977 Dec;273(1):211–240. doi: 10.1113/jphysiol.1977.sp012090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferrier G. R., Howlett S. E. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents. J Physiol. 1995 Apr 1;484(Pt 1):107–122. doi: 10.1113/jphysiol.1995.sp020651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frank J. S., Mottino G., Reid D., Molday R. S., Philipson K. D. Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol. 1992 Apr;117(2):337–345. doi: 10.1083/jcb.117.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gao T., Puri T. S., Gerhardstein B. L., Chien A. J., Green R. D., Hosey M. M. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem. 1997 Aug 1;272(31):19401–19407. doi: 10.1074/jbc.272.31.19401. [DOI] [PubMed] [Google Scholar]
  15. Haigney M. C., Lakatta E. G., Stern M. D., Silverman H. S. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation. 1994 Jul;90(1):391–399. doi: 10.1161/01.cir.90.1.391. [DOI] [PubMed] [Google Scholar]
  16. Harrison S. M., McCall E., Boyett M. R. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes. J Physiol. 1992 Apr;449:517–550. doi: 10.1113/jphysiol.1992.sp019100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Irisawa H., Sato R. Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res. 1986 Sep;59(3):348–355. doi: 10.1161/01.res.59.3.348. [DOI] [PubMed] [Google Scholar]
  18. Kameyama M., Kakei M., Sato R., Shibasaki T., Matsuda H., Irisawa H. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 1984 May 24;309(5966):354–356. doi: 10.1038/309354a0. [DOI] [PubMed] [Google Scholar]
  19. Karmazyn M. The sodium-hydrogen exchange system in the heart: its role in ischemic and reperfusion injury and therapeutic implications. Can J Cardiol. 1996 Oct;12(10):1074–1082. [PubMed] [Google Scholar]
  20. Kieval R. S., Bloch R. J., Lindenmayer G. E., Ambesi A., Lederer W. J. Immunofluorescence localization of the Na-Ca exchanger in heart cells. Am J Physiol. 1992 Aug;263(2 Pt 1):C545–C550. doi: 10.1152/ajpcell.1992.263.2.C545. [DOI] [PubMed] [Google Scholar]
  21. Kohomoto O., Levi A. J., Bridge J. H. Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ Res. 1994 Mar;74(3):550–554. doi: 10.1161/01.res.74.3.550. [DOI] [PubMed] [Google Scholar]
  22. Leblanc N., Hume J. R. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science. 1990 Apr 20;248(4953):372–376. doi: 10.1126/science.2158146. [DOI] [PubMed] [Google Scholar]
  23. Levesque P. C., Leblanc N., Hume J. R. Release of calcium from guinea pig cardiac sarcoplasmic reticulum induced by sodium-calcium exchange. Cardiovasc Res. 1994 Mar;28(3):370–378. doi: 10.1093/cvr/28.3.370. [DOI] [PubMed] [Google Scholar]
  24. Levi A. J. A role for sodium/calcium exchange in the action potential shortening caused by strophanthidin in guinea pig ventricular myocytes. Cardiovasc Res. 1993 Mar;27(3):471–481. doi: 10.1093/cvr/27.3.471. [DOI] [PubMed] [Google Scholar]
  25. Levi A. J., Dalton G. R., Hancox J. C., Mitcheson J. S., Issberner J., Bates J. A., Evans S. J., Howarth F. C., Hobai I. A., Jones J. V. Role of intracellular sodium overload in the genesis of cardiac arrhythmias. J Cardiovasc Electrophysiol. 1997 Jun;8(6):700–721. doi: 10.1111/j.1540-8167.1997.tb01834.x. [DOI] [PubMed] [Google Scholar]
  26. Levi A. J., Spitzer K. W., Kohmoto O., Bridge J. H. Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes. Am J Physiol. 1994 Apr;266(4 Pt 2):H1422–H1433. doi: 10.1152/ajpheart.1994.266.4.H1422. [DOI] [PubMed] [Google Scholar]
  27. Levi A. J. The effect of strophanthidin on action potential, calcium current and contraction in isolated guinea-pig ventricular myocytes. J Physiol. 1991 Nov;443:1–23. doi: 10.1113/jphysiol.1991.sp018819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Litwin S. E., Bridge J. H. Enhanced Na(+)-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling. Circ Res. 1997 Dec;81(6):1083–1093. doi: 10.1161/01.res.81.6.1083. [DOI] [PubMed] [Google Scholar]
  29. Litwin S. E., Li J., Bridge J. H. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J. 1998 Jul;75(1):359–371. doi: 10.1016/S0006-3495(98)77520-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Litwin S., Kohmoto O., Levi A. J., Spitzer K. W., Bridge J. H. Evidence that reverse Na-Ca exchange can trigger SR calcium release. Ann N Y Acad Sci. 1996 Apr 15;779:451–463. doi: 10.1111/j.1749-6632.1996.tb44820.x. [DOI] [PubMed] [Google Scholar]
  31. Lu H. R., De Clerck F. R 56 865, a Na+/Ca(2+)-overload inhibitor, protects against aconitine-induced cardiac arrhythmias in vivo. J Cardiovasc Pharmacol. 1993 Jul;22(1):120–125. doi: 10.1097/00005344-199307000-00019. [DOI] [PubMed] [Google Scholar]
  32. Luk H. N., Carmeliet E. Na(+)-activated K+ current in cardiac cells: rectification, open probability, block and role in digitalis toxicity. Pflugers Arch. 1990 Aug;416(6):766–768. doi: 10.1007/BF00370627. [DOI] [PubMed] [Google Scholar]
  33. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  34. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res. 1994 Jun;74(6):1097–1113. doi: 10.1161/01.res.74.6.1097. [DOI] [PubMed] [Google Scholar]
  35. Matsuoka S., Hilgemann D. W. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992 Dec;100(6):963–1001. doi: 10.1085/jgp.100.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nagatomo T., Fan Z., Ye B., Tonkovich G. S., January C. T., Kyle J. W., Makielski J. C. Temperature dependence of early and late currents in human cardiac wild-type and long Q-T DeltaKPQ Na+ channels. Am J Physiol. 1998 Dec;275(6 Pt 2):H2016–H2024. doi: 10.1152/ajpheart.1998.275.6.H2016. [DOI] [PubMed] [Google Scholar]
  37. Nakao M., Gadsby D. C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539–565. doi: 10.1085/jgp.94.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nuss H. B., Houser S. R. Sodium-calcium exchange-mediated contractions in feline ventricular myocytes. Am J Physiol. 1992 Oct;263(4 Pt 2):H1161–H1169. doi: 10.1152/ajpheart.1992.263.4.H1161. [DOI] [PubMed] [Google Scholar]
  39. Radford N. B., Makos J. D., Ramasamy R., Sherry A. D., Malloy C. R. Dissociation of intracellular sodium from contractile state in guinea-pig hearts treated with ouabain. J Mol Cell Cardiol. 1998 Mar;30(3):639–647. doi: 10.1006/jmcc.1997.0629. [DOI] [PubMed] [Google Scholar]
  40. Ravens U., Himmel H. M. Drugs preventing Na+ and Ca2+ overload. Pharmacol Res. 1999 Mar;39(3):167–174. doi: 10.1006/phrs.1998.0416. [DOI] [PubMed] [Google Scholar]
  41. Sanguinetti M. C. Na+1-activated and ATP-sensitive K+ channels in the heart. Prog Clin Biol Res. 1990;334:85–109. [PubMed] [Google Scholar]
  42. Shaw R. M., Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res. 1997 Aug;35(2):256–272. doi: 10.1016/s0008-6363(97)00093-x. [DOI] [PubMed] [Google Scholar]
  43. Sipido K. R., Maes M., Van de Werf F. Low efficiency of Ca2+ entry through the Na(+)-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)-Ca2+ exchange. Circ Res. 1997 Dec;81(6):1034–1044. doi: 10.1161/01.res.81.6.1034. [DOI] [PubMed] [Google Scholar]
  44. Smith T. W., Antman E. M., Friedman P. L., Blatt C. M., Marsh J. D. Digitalis glycosides: mechanisms and manifestations of toxicity. Part I. Prog Cardiovasc Dis. 1984 Mar-Apr;26(5):413–458. doi: 10.1016/0033-0620(84)90012-4. [DOI] [PubMed] [Google Scholar]
  45. Tani M., Neely J. R. Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol. 1990 Jan;22(1):57–72. doi: 10.1016/0022-2828(90)90972-5. [DOI] [PubMed] [Google Scholar]
  46. Varghese A., Sell G. R. A conservation principle and its effect on the formulation of Na-Ca exchanger current in cardiac cells. J Theor Biol. 1997 Nov 7;189(1):33–40. doi: 10.1006/jtbi.1997.0487. [DOI] [PubMed] [Google Scholar]
  47. Veldkamp M. W., Vereecke J., Carmeliet E. Effects of intracellular sodium and hydrogen ion on the sodium activated potassium channel in isolated patches from guinea pig ventricular myocytes. Cardiovasc Res. 1994 Jul;28(7):1036–1041. doi: 10.1093/cvr/28.7.1036. [DOI] [PubMed] [Google Scholar]
  48. Viswanathan P. C., Shaw R. M., Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation. 1999 May 11;99(18):2466–2474. doi: 10.1161/01.cir.99.18.2466. [DOI] [PubMed] [Google Scholar]
  49. Vornanen M., Shepherd N., Isenberg G. Tension-voltage relations of single myocytes reflect Ca release triggered by Na/Ca exchange at 35 degrees C but not 23 degrees C. Am J Physiol. 1994 Aug;267(2 Pt 1):C623–C632. doi: 10.1152/ajpcell.1994.267.2.C623. [DOI] [PubMed] [Google Scholar]
  50. Wang D. Y., Chae S. W., Gong Q. Y., Lee C. O. Role of aiNa in positive force-frequency staircase in guinea pig papillary muscle. Am J Physiol. 1988 Dec;255(6 Pt 1):C798–C807. doi: 10.1152/ajpcell.1988.255.6.C798. [DOI] [PubMed] [Google Scholar]
  51. Wang Z., Kimitsuki T., Noma A. Conductance properties of the Na(+)-activated K+ channel in guinea-pig ventricular cells. J Physiol. 1991 Feb;433:241–257. doi: 10.1113/jphysiol.1991.sp018424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wasserstrom J. A., Vites A. M. Activation of contraction in cat ventricular myocytes: effects of low Cd(2+) concentration and temperature. Am J Physiol. 1999 Aug;277(2 Pt 2):H488–H498. doi: 10.1152/ajpheart.1999.277.2.H488. [DOI] [PubMed] [Google Scholar]
  53. Wendt-Gallitelli M. F., Voigt T., Isenberg G. Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea-pig ventricular myocytes. J Physiol. 1993 Dec;472:33–44. doi: 10.1113/jphysiol.1993.sp019934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wier W. G., Hess P. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction. J Gen Physiol. 1984 Mar;83(3):395–415. doi: 10.1085/jgp.83.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zeng J., Laurita K. R., Rosenbaum D. S., Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res. 1995 Jul;77(1):140–152. doi: 10.1161/01.res.77.1.140. [DOI] [PubMed] [Google Scholar]
  56. Zeng J., Rudy Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J. 1995 Mar;68(3):949–964. doi: 10.1016/S0006-3495(95)80271-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. van Echteld C. J., Kirkels J. H., Eijgelshoven M. H., van der Meer P., Ruigrok T. J. Intracellular sodium during ischemia and calcium-free perfusion: a 23Na NMR study. J Mol Cell Cardiol. 1991 Mar;23(3):297–307. doi: 10.1016/0022-2828(91)90066-u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES