Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2572–2580. doi: 10.1016/S0006-3495(00)76801-9

Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels.

T I Rokitskaya 1, M Block 1, Y N Antonenko 1, E A Kotova 1, P Pohl 1
PMCID: PMC1300846  PMID: 10777753

Abstract

The photodynamic activity of sulfonated aluminum phthalocyanines (AlPcS(n), 1 </= n </= 4) was found to correlate with their affinity for membrane lipids. Adsorbing to the surface of large unilamellar vesicles (LUVs), aluminum phthalocyanine disulfonate induced the highest changes in their electrophoretic mobility. AlPcS(2) was also most efficient in mediating photoinactivation of gramicidin channels, as revealed by measurements of the electric current across planar lipid bilayers. The increase in the degree of sulfonation of phthalocyanine progressively reduced its affinity for the lipid bilayer as well as its potency of sensitizing gramicidin channel photoinactivation. The portion of photoinactivated gramicidin channels, alpha, increased with rising photosensitizer concentration up to some optimum. The concentration at which alpha was at half-maximum amounted to 80 nM, 30 nM, 200 nM, and 2 microM for AlPcS(1), AlPcS(2), AlPcS(3), and AlPcS(4), respectively. At high concentrations alpha was found to decrease, which was attributed to quenching of reactive oxygen species and self-quenching of the photosensitizer triplet state by its ground state. Fluoride anions were observed to inhibit both AlPcS(n) (2 </= n </= 4) binding to LUVs and sensitized photoinactivation of gramicidin channels. It is concluded that photosensitizer binding to membrane lipids is a prerequisite for the photodynamic inactivation of gramicidin channels.

Full Text

The Full Text of this article is available as a PDF (112.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Apell H. J., Bamberg E., Busath D. D., Koeppe R. E., 2nd, Sigworth F. J., Szabo G., Urry D. W., Woolley A. Gramicidin channel controversy--the structure in a lipid environment. Nat Struct Biol. 1999 Jul;6(7):609–612. doi: 10.1038/10648. [DOI] [PubMed] [Google Scholar]
  3. Ben-Hur E., Clay M. E., Vicioso E. F., Antunez A. R., Rihter B. D., Kenney M. E., Oleinick N. L. Protection by the fluoride ion against phthalocyanine-induced photodynamic killing of Chinese hamster cells. Photochem Photobiol. 1992 Feb;55(2):231–237. doi: 10.1111/j.1751-1097.1992.tb04232.x. [DOI] [PubMed] [Google Scholar]
  4. Ben-Hur E., Dubbelman T. M., Van Steveninck J. The effect of fluoride on binding and photodynamic action of phthalocyanines with proteins. Photochem Photobiol. 1991 Nov;54(5):703–707. doi: 10.1111/j.1751-1097.1991.tb02078.x. [DOI] [PubMed] [Google Scholar]
  5. Ben-Hur E., Hoeben R. C., Van Ormondt H., Dubbelman T. M., Van Steveninck J. Photodynamic inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride. J Photochem Photobiol B. 1992 Apr 30;13(2):145–152. doi: 10.1016/1011-1344(92)85053-w. [DOI] [PubMed] [Google Scholar]
  6. Ben-Hur E., Malik Z., Dubbelman T. M., Margaron P., Ali H., van Lier J. E. Phthalocyanine-induced photohemolysis: structure-activity relationship and the effect of fluoride. Photochem Photobiol. 1993 Sep;58(3):351–355. doi: 10.1111/j.1751-1097.1993.tb09573.x. [DOI] [PubMed] [Google Scholar]
  7. Ben-Hur E., Nagelkerke J. F., Dubbelman T. M., Van Steveninck J. The effect of fluoride on photodynamic-induced fluorescence changes of aluminium phthalocyanine in Chinese hamster cells. Int J Radiat Biol. 1992 Jun;61(6):767–772. doi: 10.1080/09553009214551621. [DOI] [PubMed] [Google Scholar]
  8. Berg K., Bommer J. C., Moan J. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol. 1989 May;49(5):587–594. doi: 10.1111/j.1751-1097.1989.tb08428.x. [DOI] [PubMed] [Google Scholar]
  9. Berg K., Bommer J. C., Moan J. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies. Cancer Lett. 1989 Jan;44(1):7–15. doi: 10.1016/0304-3835(89)90101-8. [DOI] [PubMed] [Google Scholar]
  10. Beyer R. E. The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr. 1994 Aug;26(4):349–358. doi: 10.1007/BF00762775. [DOI] [PubMed] [Google Scholar]
  11. Carnie S., McLaughlin S. Large divalent cations and electrostatic potentials adjacent to membranes. A theoretical calculation. Biophys J. 1983 Dec;44(3):325–332. doi: 10.1016/S0006-3495(83)84306-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chan W. S., Marshall J. F., Svensen R., Bedwell J., Hart I. R. Effect of sulfonation on the cell and tissue distribution of the photosensitizer aluminum phthalocyanine. Cancer Res. 1990 Aug 1;50(15):4533–4538. [PubMed] [Google Scholar]
  13. Chan W. S., West C. M., Moore J. V., Hart I. R. Photocytotoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in vivo tumours. Br J Cancer. 1991 Nov;64(5):827–832. doi: 10.1038/bjc.1991.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chatlani P. T., Bedwell J., MacRobert A. J., Barr H., Boulos P. B., Krasner N., Phillips D., Bown S. G. Comparison of distribution and photodynamic effects of di- and tetra-sulphonated aluminium phthalocyanines in normal rat colon. Photochem Photobiol. 1991 Jun;53(6):745–751. doi: 10.1111/j.1751-1097.1991.tb09887.x. [DOI] [PubMed] [Google Scholar]
  15. Chou P. T., Khan A. U. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C. Biochem Biophys Res Commun. 1983 Sep 30;115(3):932–937. doi: 10.1016/s0006-291x(83)80024-2. [DOI] [PubMed] [Google Scholar]
  16. Denisov G., Wanaski S., Luan P., Glaser M., McLaughlin S. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys J. 1998 Feb;74(2 Pt 1):731–744. doi: 10.1016/S0006-3495(98)73998-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ehrenberg B., Anderson J. L., Foote C. S. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem Photobiol. 1998 Aug;68(2):135–140. [PubMed] [Google Scholar]
  18. Ehrenberg B., Gross E., Nitzan Y., Malik Z. Electric depolarization of photosensitized cells: lipid vs. protein alterations. Biochim Biophys Acta. 1993 Sep 19;1151(2):257–264. doi: 10.1016/0005-2736(93)90110-l. [DOI] [PubMed] [Google Scholar]
  19. Foley M. S., Beeby A., Parker A. W., Bishop S. M., Phillips D. Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin. J Photochem Photobiol B. 1997 Mar;38(1):10–17. doi: 10.1016/s1011-1344(96)07434-9. [DOI] [PubMed] [Google Scholar]
  20. Girotti A. W. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr;51(4):497–509. doi: 10.1111/j.1751-1097.1990.tb01744.x. [DOI] [PubMed] [Google Scholar]
  21. Holmberg S. R., Cumming D. V., Kusama Y., Hearse D. J., Poole-Wilson P. A., Shattock M. J., Williams A. J. Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience. 1991 Mar;2(1):19–25. [PubMed] [Google Scholar]
  22. Howe L., Zhang J. Z. The effect of biological substrates on the ultrafast excited-state dynamics of zinc phthalocyanine tetrasulfonate in solution. Photochem Photobiol. 1998 Jan;67(1):90–96. [PubMed] [Google Scholar]
  23. Kochevar I. E., Bouvier J., Lynch M., Lin C. W. Influence of dye and protein location on photosensitization of the plasma membrane. Biochim Biophys Acta. 1994 Dec 30;1196(2):172–180. doi: 10.1016/0005-2736(94)00236-3. [DOI] [PubMed] [Google Scholar]
  24. Koeppe R. E., 2nd, Anderson O. S. Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct. 1996;25:231–258. doi: 10.1146/annurev.bb.25.060196.001311. [DOI] [PubMed] [Google Scholar]
  25. Krasnovsky A. A., Jr, Rodgers M. A., Galpern M. G., Rihter B., Kenney M. E., Lukjanetz E. A. Quenching of singlet molecular oxygen by phthalocyanines and naphthalocyanines. Photochem Photobiol. 1992 May;55(5):691–696. doi: 10.1111/j.1751-1097.1992.tb08512.x. [DOI] [PubMed] [Google Scholar]
  26. Krasnovsky A. A., Jr Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr Cell Biol. 1998;12(5):665–690. [PubMed] [Google Scholar]
  27. Krylov A. V., Antonenko Y. N., Kotova E. A., Rokitskaya T. I., Yaroslavov A. A. Polylysine decelerates kinetics of negatively charged gramicidin channels as shown by sensitized photoinactivation. FEBS Lett. 1998 Nov 27;440(1-2):235–238. doi: 10.1016/s0014-5793(98)01462-8. [DOI] [PubMed] [Google Scholar]
  28. Kunz L., Stark G. Photodynamic membrane damage at the level of single ion channels. Biochim Biophys Acta. 1997 Jul 5;1327(1):1–4. doi: 10.1016/s0005-2736(97)00096-5. [DOI] [PubMed] [Google Scholar]
  29. Kunz L., Stark G. Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line: I. Electrical measurements at the whole-cell level. J Membr Biol. 1998 Dec 1;166(3):179–185. doi: 10.1007/s002329900459. [DOI] [PubMed] [Google Scholar]
  30. Kunz L., Stark G. Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line: II. Analysis at the level of membrane patches. J Membr Biol. 1998 Dec 1;166(3):187–196. doi: 10.1007/s002329900460. [DOI] [PubMed] [Google Scholar]
  31. Kunz L., Zeidler U., Haegele K., Przybylski M., Stark G. Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. Biochemistry. 1995 Sep 19;34(37):11895–11903. doi: 10.1021/bi00037a030. [DOI] [PubMed] [Google Scholar]
  32. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  33. Paquette B., Ali H., Langlois R., van Lier J. E. Biological activities of phthalocyanines--VIII. Cellular distribution in V-79 Chinese hamster cells and phototoxicity of selectively sulfonated aluminum phthalocyanines. Photochem Photobiol. 1988 Feb;47(2):215–220. doi: 10.1111/j.1751-1097.1988.tb02717.x. [DOI] [PubMed] [Google Scholar]
  34. Paquette B., Boyle R. W., Ali H., MacLennan A. H., Truscott T. G., van Lier J. E. Sulfonated phthalimidomethyl aluminum phthalocyanine: the effect of hydrophobic substituents on the in vitro phototoxicity of phthalocyanines. Photochem Photobiol. 1991 Mar;53(3):323–327. doi: 10.1111/j.1751-1097.1991.tb03635.x. [DOI] [PubMed] [Google Scholar]
  35. Peng Q., Farrants G. W., Madslien K., Bommer J. C., Moan J., Danielsen H. E., Nesland J. M. Subcellular localization, redistribution and photobleaching of sulfonated aluminum phthalocyanines in a human melanoma cell line. Int J Cancer. 1991 Sep 9;49(2):290–295. doi: 10.1002/ijc.2910490225. [DOI] [PubMed] [Google Scholar]
  36. Pohl E. E., Krylov A. V., Block M., Pohl P. Changes of the membrane potential profile induced by verapamil and propranolol. Biochim Biophys Acta. 1998 Aug 14;1373(1):170–178. doi: 10.1016/s0005-2736(98)00098-4. [DOI] [PubMed] [Google Scholar]
  37. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys J. 1997 Aug;73(2):850–854. doi: 10.1016/S0006-3495(97)78117-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Photodynamic inactivation of gramicidin channels:a flash-photolysis study. Biochim Biophys Acta. 1996 Jul 31;1275(3):221–226. doi: 10.1016/0005-2728(96)00025-4. [DOI] [PubMed] [Google Scholar]
  39. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. The interaction of phthalocyanine with planar lipid bilayers. Photodynamic inactivation of gramicidin channels. FEBS Lett. 1993 Aug 30;329(3):332–335. doi: 10.1016/0014-5793(93)80248-s. [DOI] [PubMed] [Google Scholar]
  40. Rose R. C. Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation. Biochim Biophys Acta. 1987 Apr 16;924(1):254–256. doi: 10.1016/0304-4165(87)90094-8. [DOI] [PubMed] [Google Scholar]
  41. Rosenthal I., Shafirovich V. Y., Geacintov N. E., Ben-Hur E., Horowitz B. The photochemical properties of fluoroaluminum phthalocyanine. Photochem Photobiol. 1994 Sep;60(3):215–220. doi: 10.1111/j.1751-1097.1994.tb05093.x. [DOI] [PubMed] [Google Scholar]
  42. Sapper H., Röth K. D., Lohmann W. The diffusion of L(+)-ascorbic acid across DPPC vesicle membranes. J Microencapsul. 1985 Jan-Mar;2(1):23–30. doi: 10.3109/02652048509049574. [DOI] [PubMed] [Google Scholar]
  43. Strässle M., Stark G. Photodynamic inactivation of an ion channel: gramicidin A. Photochem Photobiol. 1992 Mar;55(3):461–463. doi: 10.1111/j.1751-1097.1992.tb04262.x. [DOI] [PubMed] [Google Scholar]
  44. Tarr M., Arriaga E., Valenzeno D. Progression of cardiac potassium current modification after brief exposure to reactive oxygen. J Mol Cell Cardiol. 1995 May;27(5):1099–1109. doi: 10.1016/0022-2828(95)90046-2. [DOI] [PubMed] [Google Scholar]
  45. Valenzeno D. P. Photomodification of biological membranes with emphasis on singlet oxygen mechanisms. Photochem Photobiol. 1987 Jul;46(1):147–160. doi: 10.1111/j.1751-1097.1987.tb04749.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES