Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2943–2958. doi: 10.1016/S0006-3495(00)76834-2

Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels.

V Vedantham 1, S C Cannon 1
PMCID: PMC1300879  PMID: 10827974

Abstract

Mutations in segment IVS6 of voltage-gated Na(+) channels affect fast-inactivation, slow-inactivation, local anesthetic action, and batrachotoxin (BTX) action. To detect conformational changes associated with these processes, we substituted a cysteine for a valine at position 1583 in the rat adult skeletal muscle sodium channel alpha-subunit, and examined the accessibility of the substituted cysteine to modification by 2-aminoethyl methanethiosulfonate (MTS-EA) in excised macropatches. MTS-EA causes an irreversible reduction in the peak current when applied both internally and externally, with a reaction rate that is strongly voltage-dependent. The rate increased when exposures to MTS-EA occurred during brief conditioning pulses to progressively more depolarized voltages, but decreased when exposures occurred at the end of prolonged depolarizations, revealing two conformational changes near site 1583, one coupled to fast inactivation, and one tightly associated with slow inactivation. Tetraethylammonium, a pore blocker, did not affect the reaction rate from either direction, while BTX, a lipophilic activator of sodium channels, completely prevented the modification reaction from occurring from either direction. We conclude that there are two inactivation-associated conformational changes in the vicinity of site 1583, that the reactive site most likely faces away from the pore, and that site 1583 comprises part of the BTX receptor.

Full Text

The Full Text of this article is available as a PDF (198.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balser J. R., Nuss H. B., Chiamvimonvat N., Pérez-García M. T., Marban E., Tomaselli G. F. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol. 1996 Jul 15;494(Pt 2):431–442. doi: 10.1113/jphysiol.1996.sp021503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bénitah J. P., Chen Z., Balser J. R., Tomaselli G. F., Marbán E. Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J Neurosci. 1999 Mar 1;19(5):1577–1585. doi: 10.1523/JNEUROSCI.19-05-01577.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 1993 Feb;10(2):317–326. doi: 10.1016/0896-6273(93)90321-h. [DOI] [PubMed] [Google Scholar]
  4. Cha A., Ruben P. C., George A. L., Jr, Fujimoto E., Bezanilla F. Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron. 1999 Jan;22(1):73–87. doi: 10.1016/s0896-6273(00)80680-7. [DOI] [PubMed] [Google Scholar]
  5. Chen C., Cannon S. C. Modulation of Na+ channel inactivation by the beta 1 subunit: a deletion analysis. Pflugers Arch. 1995 Dec;431(2):186–195. doi: 10.1007/BF00410190. [DOI] [PubMed] [Google Scholar]
  6. Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayward L. J., Brown R. H., Jr, Cannon S. C. Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J Gen Physiol. 1996 May;107(5):559–576. doi: 10.1085/jgp.107.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayward L. J., Brown R. H., Jr, Cannon S. C. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J. 1997 Mar;72(3):1204–1219. doi: 10.1016/S0006-3495(97)78768-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holmgren M., Liu Y., Xu Y., Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996;35(7):797–804. doi: 10.1016/0028-3908(96)00129-3. [DOI] [PubMed] [Google Scholar]
  11. Holmgren M., Shin K. S., Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998 Sep;21(3):617–621. doi: 10.1016/s0896-6273(00)80571-1. [DOI] [PubMed] [Google Scholar]
  12. Jan L. Y., Jan Y. N. A superfamily of ion channels. Nature. 1990 Jun 21;345(6277):672–672. doi: 10.1038/345672a0. [DOI] [PubMed] [Google Scholar]
  13. Kambouris N. G., Hastings L. A., Stepanovic S., Marban E., Tomaselli G. F., Balser J. R. Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat micro1 skeletal muscle sodium channel. J Physiol. 1998 Nov 1;512(Pt 3):693–705. doi: 10.1111/j.1469-7793.1998.693bd.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kellenberger S., Scheuer T., Catterall W. A. Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem. 1996 Nov 29;271(48):30971–30979. doi: 10.1074/jbc.271.48.30971. [DOI] [PubMed] [Google Scholar]
  15. Khodorov B. I. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog Biophys Mol Biol. 1985;45(2):57–148. doi: 10.1016/0079-6107(85)90005-7. [DOI] [PubMed] [Google Scholar]
  16. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  17. Linford N. J., Cantrell A. R., Qu Y., Scheuer T., Catterall W. A. Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13947–13952. doi: 10.1073/pnas.95.23.13947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu Y., Holmgren M., Jurman M. E., Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 1997 Jul;19(1):175–184. doi: 10.1016/s0896-6273(00)80357-8. [DOI] [PubMed] [Google Scholar]
  19. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  20. Loots E., Isacoff E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):377–389. doi: 10.1085/jgp.112.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McClatchey A. I., Cannon S. C., Slaugenhaupt S. A., Gusella J. F. The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet. 1993 Jun;2(6):745–749. doi: 10.1093/hmg/2.6.745. [DOI] [PubMed] [Google Scholar]
  22. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem. 1995 May 19;270(20):12025–12034. doi: 10.1074/jbc.270.20.12025. [DOI] [PubMed] [Google Scholar]
  23. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12346–12350. doi: 10.1073/pnas.91.25.12346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Leary M. E., Horn R. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. J Gen Physiol. 1994 Sep;104(3):507–522. doi: 10.1085/jgp.104.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
  26. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  27. Takahashi M. P., Cannon S. C. Enhanced slow inactivation by V445M: a sodium channel mutation associated with myotonia. Biophys J. 1999 Feb;76(2):861–868. doi: 10.1016/S0006-3495(99)77249-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanguy J., Yeh J. Z. BTX modification of Na channels in squid axons. I. State dependence of BTX action. J Gen Physiol. 1991 Mar;97(3):499–519. doi: 10.1085/jgp.97.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Todt H., Dudley S. C., Jr, Kyle J. W., French R. J., Fozzard H. A. Ultra-slow inactivation in mu1 Na+ channels is produced by a structural rearrangement of the outer vestibule. Biophys J. 1999 Mar;76(3):1335–1345. doi: 10.1016/S0006-3495(99)77296-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Townsend C., Horn R. Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J Gen Physiol. 1997 Jul;110(1):23–33. doi: 10.1085/jgp.110.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trainer V. L., Brown G. B., Catterall W. A. Site of covalent labeling by a photoreactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel alpha subunit. J Biol Chem. 1996 May 10;271(19):11261–11267. doi: 10.1074/jbc.271.19.11261. [DOI] [PubMed] [Google Scholar]
  32. Vedantham V., Cannon S. C. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels. J Gen Physiol. 1998 Jan;111(1):83–93. doi: 10.1085/jgp.111.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vedantham V., Cannon S. C. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels. J Gen Physiol. 1999 Jan;113(1):7–16. doi: 10.1085/jgp.113.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang S. Y., Wang G. K. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys J. 1997 Apr;72(4):1633–1640. doi: 10.1016/S0006-3495(97)78809-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wang S. Y., Wang G. K. Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys J. 1999 Jun;76(6):3141–3149. doi: 10.1016/S0006-3495(99)77465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang S. Y., Wang G. K. Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2653–2658. doi: 10.1073/pnas.95.5.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wright S. N., Wang S. Y., Wang G. K. Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics. Mol Pharmacol. 1998 Oct;54(4):733–739. [PubMed] [Google Scholar]
  39. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  40. Yang N., Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 1995 Jul;15(1):213–218. doi: 10.1016/0896-6273(95)90078-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES