Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3252–3259. doi: 10.1016/S0006-3495(00)76861-5

Visualization of myoglobin-facilitated mitochondrial O(2) delivery in a single isolated cardiomyocyte.

E Takahashi 1, H Endoh 1, K Doi 1
PMCID: PMC1300906  PMID: 10828001

Abstract

The purpose of the present study was to visualize myoglobin-facilitated oxygen delivery to mitochondria at a critical mitochondrial oxygen supply in single isolated cardiomyocytes of rats. Using the autofluorescence of mitochondrial reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), the mitochondrial oxygen supply was imaged from approximately 1.4 microm inside the cell surface at a subcellular spatial resolution. Significant radial gradients of intracellular oxygenation were produced by superfusing the cell suspension with a mixed gas containing 2-4% oxygen while stimulating mitochondrial respiration with an uncoupler of oxidative phosphorylation. Augmentation of the NAD(P)H fluorescence started from the core of the cell (anoxic core) and progressively expanded toward the plasma membrane, as the extracellular Po(2) was lowered. Inactivation of cytosolic myoglobin by 5 mM NaNO(2) significantly enlarged such anoxic regions. Nitrite affected neither mitochondrial respiration in uncoupled cells nor the relationship between Po(2) and the NAD(P)H fluorescence in coupled cells. Thus we conclude that myoglobin significantly facilitates intracellular oxygen transport at a critical level of mitochondrial oxygen supply in single cardiomyocytes.

Full Text

The Full Text of this article is available as a PDF (552.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai A. E., Kasserra C. E., Territo P. R., Gandjbakhche A. H., Balaban R. S. Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes. Am J Physiol. 1999 Aug;277(2 Pt 2):H683–H697. doi: 10.1152/ajpheart.1999.277.2.H683. [DOI] [PubMed] [Google Scholar]
  2. Bache R. J., Zhang J., Murakami Y., Zhang Y., Cho Y. K., Merkle H., Gong G., From A. H., Ugurbil K. Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res. 1999 Jun;42(3):616–626. doi: 10.1016/s0008-6363(98)00332-0. [DOI] [PubMed] [Google Scholar]
  3. Chance B. Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res. 1976 May;38(5 Suppl 1):I31–I38. [PubMed] [Google Scholar]
  4. Chung Y., Xu D., Jue T. Nitrite oxidation of myoglobin in perfused myocardium: implications for energy coupling in respiration. Am J Physiol. 1996 Sep;271(3 Pt 2):H1166–H1173. doi: 10.1152/ajpheart.1996.271.3.H1166. [DOI] [PubMed] [Google Scholar]
  5. Coburn R. F., Ploegmakers F., Gondrie P., Abboud R. Myocardial myoglobin oxygen tension. Am J Physiol. 1973 Apr;224(4):870–876. doi: 10.1152/ajplegacy.1973.224.4.870. [DOI] [PubMed] [Google Scholar]
  6. Doeller J. E., Wittenberg B. A. Myoglobin function and energy metabolism of isolated cardiac myocytes: effect of sodium nitrite. Am J Physiol. 1991 Jul;261(1 Pt 2):H53–H62. doi: 10.1152/ajpheart.1991.261.1.H53. [DOI] [PubMed] [Google Scholar]
  7. Eng J., Lynch R. M., Balaban R. S. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J. 1989 Apr;55(4):621–630. doi: 10.1016/S0006-3495(89)82859-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esumi K., Nishida M., Shaw D., Smith T. W., Marsh J. D. NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol. 1991 Jun;260(6 Pt 2):H1743–H1752. doi: 10.1152/ajpheart.1991.260.6.H1743. [DOI] [PubMed] [Google Scholar]
  9. Federspiel W. J. A model study of intracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber. Biophys J. 1986 Apr;49(4):857–868. doi: 10.1016/S0006-3495(86)83715-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garry D. J., Ordway G. A., Lorenz J. N., Radford N. B., Chin E. R., Grange R. W., Bassel-Duby R., Williams R. S. Mice without myoglobin. Nature. 1998 Oct 29;395(6705):905–908. doi: 10.1038/27681. [DOI] [PubMed] [Google Scholar]
  11. Gayeski T. E., Honig C. R. Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol. 1991 Feb;260(2 Pt 2):H522–H531. doi: 10.1152/ajpheart.1991.260.2.H522. [DOI] [PubMed] [Google Scholar]
  12. Glabe A., Chung Y., Xu D., Jue T. Carbon monoxide inhibition of regulatory pathways in myocardium. Am J Physiol. 1998 Jun;274(6 Pt 2):H2143–H2151. doi: 10.1152/ajpheart.1998.274.6.H2143. [DOI] [PubMed] [Google Scholar]
  13. Gnaiger E., Steinlechner-Maran R., Méndez G., Eberl T., Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995 Dec;27(6):583–596. doi: 10.1007/BF02111656. [DOI] [PubMed] [Google Scholar]
  14. Groebe K. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data. Biophys J. 1995 Apr;68(4):1246–1269. doi: 10.1016/S0006-3495(95)80300-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gödecke A., Flögel U., Zanger K., Ding Z., Hirchenhain J., Decking U. K., Schrader J. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10495–10500. doi: 10.1073/pnas.96.18.10495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Honig C. R., Gayeski T. E. Resistance to O2 diffusion in anemic red muscle: roles of flux density and cell PO2. Am J Physiol. 1993 Sep;265(3 Pt 2):H868–H875. doi: 10.1152/ajpheart.1993.265.3.H868. [DOI] [PubMed] [Google Scholar]
  17. Jürgens K. D., Peters T., Gros G. Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3829–3833. doi: 10.1073/pnas.91.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Papadopoulos S., Jürgens K. D., Gros G. Diffusion of myoglobin in skeletal muscle cells--dependence on fibre type, contraction and temperature. Pflugers Arch. 1995 Aug;430(4):519–525. doi: 10.1007/BF00373888. [DOI] [PubMed] [Google Scholar]
  19. Richmond K. N., Burnite S., Lynch R. M. Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes. Am J Physiol. 1997 Nov;273(5 Pt 1):C1613–C1622. doi: 10.1152/ajpcell.1997.273.5.C1613. [DOI] [PubMed] [Google Scholar]
  20. Rumsey W. L., Schlosser C., Nuutinen E. M., Robiolio M., Wilson D. F. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J Biol Chem. 1990 Sep 15;265(26):15392–15402. [PubMed] [Google Scholar]
  21. Takahashi E., Doi K. Visualization of oxygen level inside a single cardiac myocyte. Am J Physiol. 1995 Jun;268(6 Pt 2):H2561–H2568. doi: 10.1152/ajpheart.1995.268.6.H2561. [DOI] [PubMed] [Google Scholar]
  22. Takahashi E., Endoh H., Doi K. Intracellular gradients of O2 supply to mitochondria in actively respiring single cardiomyocyte of rats. Am J Physiol. 1999 Feb;276(2 Pt 2):H718–H724. doi: 10.1152/ajpheart.1999.276.2.H718. [DOI] [PubMed] [Google Scholar]
  23. Takahashi E., Sato K., Endoh H., Xu Z. L., Doi K. Direct observation of radial intracellular PO2 gradients in a single cardiomyocyte of the rat. Am J Physiol. 1998 Jul;275(1 Pt 2):H225–H233. doi: 10.1152/ajpheart.1998.275.1.H225. [DOI] [PubMed] [Google Scholar]
  24. Tran T. K., Kreutzer U., Jue T. Observing the deoxy myoglobin and hemoglobin signals from rat myocardium in situ. FEBS Lett. 1998 Sep 4;434(3):309–312. doi: 10.1016/s0014-5793(98)01001-1. [DOI] [PubMed] [Google Scholar]
  25. White R. L., Wittenberg B. A. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply. Biophys J. 1993 Jul;65(1):196–204. doi: 10.1016/S0006-3495(93)81058-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wittenberg B. A., Wittenberg J. B. Oxygen pressure gradients in isolated cardiac myocytes. J Biol Chem. 1985 Jun 10;260(11):6548–6554. [PubMed] [Google Scholar]
  27. Wittenberg B. A., Wittenberg J. B. Transport of oxygen in muscle. Annu Rev Physiol. 1989;51:857–878. doi: 10.1146/annurev.ph.51.030189.004233. [DOI] [PubMed] [Google Scholar]
  28. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES